
Data warehouse
— concepts and best practices —

TA
BL

E
O

F
C

O
N

TE
N

TS

Contents
1. Introduction .1

1.1. Purpose .2

1.2. Scope .3

1.3. Related documents .4

1.4. Acronyms .5

2. Data warehouse . 6

2.1. Overview .6

2.2. DWH architecture .7

2.2.1. Kimball vs. Inmon .9

2.3. Dimensional modeling . 10

2.3.1. Dimensional modeling process . 10

2.3.2. Benefits of dimensional modeling . 11

2.3.3. Dimension tables . 11

2.3.4. Fact table . 14

2.3.5. Dealing with NULL values. 15

2.3.6. Star schema . 16

2.3.7. Snowflake schema . 18

2.4. ETL (Extract – transform – load) . 20

2.4.1. Data extraction . 20

2.4.2. Data transformation . 21

2.4.3. Data loading. 21

2.4.4. ETL vs. ELT .22

2.5. Naming conventions .22

3. ETL tools . 25

3.1. Oracle Data Integrator .26

3.1.1. Standard ODI model organization. .26

3.1.2. Standard ODI project organization .27

3.1.3. Oracle Data Integrator development tips .29

3.1.4. ODI naming conventions .32

4. Change management . 38

TA
BL

E
O

F
C

O
N

TE
N

TS

5. Release management .41

5.1. Release management activities .42

5.1.1. Release policy .42

5.1.2. Release planning .42

5.1.3. Design and development .42

5.1.4. Build and configure the release . 44

5.1.5. Fit for purpose testing . 44

5.1.6. Release acceptance testing . 45

5.1.7. Roll-out planning . 45

5.1.8. Communication, preparation and training . 46

5.1.9. Distribution and installation . 46

5.1.10. Version control .47

5.1.11. Roles and responsibilities .47

5.1.12. Release management and Project management 48

5.2. Optimal release management model . 48

6. SQL and procedural languages . 50

6.1. Structured Query Language (SQL) . 51

6.1.1. Best practices for writing SQL queries . 51

6.1.2. Execution plans . 56

6.2. PL/SQL (procedural language extension to Structured Query Language) . . . 64

6.2.1. PL/SQL best practices . 64

6.2.2. PL/SQL naming conventions .72

6.2.3. Debug PL/SQL code with SQL Developer .73

6.2.4. Event logging on Oracle database .78

6.2.5. Code snippets . 81

7. Technical documentation . 82

8. Data governance . 84

8.1. Data cleaning . 85

8.2. Data Quality . 86

8.2.1. Data Quality Circuit Loop . 86

8.2.2. Data Quality Roles . 86

8.2.3. Defining the Rules .87

TA
BL

E
O

F
C

O
N

TE
N

TS

8.2.4. Finding DQ Rules .87

8.2.5. Handling Errors . 88

8.2.6. Data Quality Dimensions . 88

8.2.7. DQ Rule Classes . 90

8.2.8. DQ Issues Quantification . 90

8.2.9. Metadata . 91

8.2.10. How to Measure Data Quality . 91

8.2.11. Analysis . 91

8.2.12. DQ Processes maintenance .92

8.2.13. DQ Processes Monitoring .92

8.2.14. Final thoughts .93

8.3. Data lineage .94

8.3.1. What is data lineage? .94

8.3.2. Why is data lineage important? .94

8.4. Data security and privacy .96

8.4.1. Data masking .96

8.4.2. User permissions in DWH .98

9. Data pipelines . 99

9.1. Batch based (Enterprise Data Warehouse) .100

9.2. Streaming data pipeline (Data Lake) .100

9.3. Data Mesh . 101

10. Our tools. 102

10.1. SQLtoODI . 103

10.2. DataLineage . 105

10.3. DataQuality . 108

1 | 110

1. Introduction
We’ve entered an era where data has become

the most critical asset of every organization.

Data-driven decision-making is at the very

core of digital transformation initiatives.

Organizations are increasingly relying on data

to make decisions to support business objectives,

such as revenue growth, profitability and

customer satisfaction.

In order to provide the business with data it needs
to perform decision making, it’s necessary to have a
well-structured data warehouse (DWH) containing
high quality and reliable data. A well-crafted data
governance strategy is necessary to maximize the
data’s value, manage its risks, and reduce the cost
of its management.

For every organization, it’s important to have a

well-defined change and release management

procedures to help deploy new changes without

any disruption or downtime. Writing technical

documentation and defining naming conventions

is also necessary because it simplifies product

maintainability and further development.

Chapter: Introduction — Purpose

2 | 110

1.1. Purpose
The purpose of this document is to describe

the concepts and best practices of data

warehousing we’ve learned over many years of

experience working with DWH.

Early on, we’ve set ourselves on a mission of

defining standards and best practices of data

warehousing and educating the community

about it. Since our inception as a small and

agile company, we’ve been successful in

comprehending the requirements of our clients

and adapting to them. This has facilitated the

growth of our company and enabled us to retain

a loyal client base.

This document is intended for everyone working

in data warehousing and those who wish to

improve their understanding of it. It’s available

as a free download on our web page and also

as an online version. Since our company’s

policy is honesty and transparency, we’ve made

this document easily accessible to everyone

interested, from our colleagues in other

companies to our clients. As a company, we aim

to contribute as much as possible to education

and knowledge transfer in order to give back to

the community and encourage the development

of junior consultants who are just starting out in

this field.

This document, in our opinion, demonstrates our
quality and expertise. We try to turn our expertise
into innovation by developing tools that make
it easier to work with complex business systems
which use large amounts of data. By doing this, we
hope to contribute to a future in which automation
will free up experts for further innovation activities
in the area of data management.

Chapter: Introduction — Scope

3 | 110

1.2. Scope
The document is structured into the following chapters:

 > Table 1-1 Document scope

Chapter Description

1 Introduction
Introduction to the document – objectives, target audience,
document structure.

2 Data warehouse
This chapter contains an overview of the DWH architecture, gives out
definitions of key components and describes different approaches to
modeling data warehouses. It also explains what an ETL process is.

3 ETL tools
This chapter gives out basic instructions for using ETL tools on an
example of Oracle Data Integrator.

4
Change
management

In this chapter we describe the importance and main objectives of
change management. We also give out a basic overview and best
practices of CM.

5
Release
management

This chapter contains an overview of release management activities
and describes an optimal RM model. A well-implemented RM model
in an organization ensures the delivery of quality releases that are
scalable for the future and leads to greater efficiency and stability.

6
SQL and procedural
languages

This chapter contains a collection of tips and tricks for working with
SQL and PL/SQL - best practices for writing SQL queries, using
execution plans, debugging PL/SQL programs… We also define
naming conventions for PL/SQL objects.

7
Technical
documentation

In this chapter we describe the benefits of writing technical
documentation and share some guidelines for writing excellent
and useful documentation. We also share a template for writing
documentation for DWH.

8 Data governance

This chapter describes the importance and different aspects of data
governance. A well-crafted data governance strategy is necessary
to maximize the data’s value, manage its risks, and reduce the cost
of its management.

9 Data pipelines
This chapter explains the concept of data pipelines and other
methods of dealing with vast amounts of data besides DWH.

10 Our tools
In this chapter we give an overview of our custom tools developed for
automating certain processes in dealing with data.

Chapter: Introduction — Related documents

4 | 110

1.3. Related documents
The following documents are related to this document:

 > Table 1-2 Related documents

Document Description Language Link

1
SQLtoODI
whitepaper

A document which contains brief
information about our tool SQLtoODI
– what it’s for, how it’s used, main
advantages, cost-benefit analysis...

Croatian
SQLtoODI

whitepaper

2
DataLineage
whitepaper

A document which contains
brief information about our tool
DataLineage – what it’s for, how it’s
used, main advantages, cost-benefit
analysis...

Croatian
DataLineage

whitepaper

3
DataQuality
whitepaper

A document which contains
brief information about our tool
DataQuality – what it’s for, how it’s
used, main advantages, cost-benefit
analysis...

Croatian
DataQuality

whitepaper

4
Technical
documentation
template

A template for writing technical
documentation for data warehouses.

English

Technical

documentation

template

https://www.agilos-it.com/DWH_concepts/SQLtoODI%20whitepaper.pdf
https://www.agilos-it.com/DWH_concepts/SQLtoODI%20whitepaper.pdf
https://www.agilos-it.com/DWH_concepts/Data_Lineage_whitepaper.pdf
https://www.agilos-it.com/DWH_concepts/Data_Lineage_whitepaper.pdf
https://agilos-it.com/DWH_concepts/DataQuality_whitepaper.pdf
https://agilos-it.com/DWH_concepts/DataQuality_whitepaper.pdf
https://agilos-it.com/DWH_concepts/technical_documentation_template.pdf
https://agilos-it.com/DWH_concepts/technical_documentation_template.pdf
https://agilos-it.com/DWH_concepts/technical_documentation_template.pdf

Chapter: Introduction — Acronyms

5 | 110

 > Table 1-3 Acronyms

1.4. Acronyms
Acronym Description

BI Business Intelligence

CAB Change Advisory Board

CCPA California Consumer Privacy Act

CI Configuration Item

CM Change management

CMDB Configuration Management Database

CRM Customer Relationship Management

DB Database

DBMS Database Management System

DEV Development environment

DQ Data Quality

DWH Data warehouse

ELT Extract – load - transform

ERP Enterprise Resource Planning

ETL Extract – transform - load

GDPR General Data Protection Regulation

IKM Integration Knowledge Module

ITIL Information Technology Infrastructure Library

KM Knowledge Module

KPI Key Performance Indicator

LKM Loading Knowledge Module

NF Normal Form

ODI Oracle Data Integrator

OLAP Online Analytical Processing

OLTP Online Transactional Processing

OR Operational Readiness

ORT Operational Readiness Testing

PL/SQL Procedural Language for SQL

PROD Production environment

RM Release management

QA Quality Assurance

RFC Request for Change document

SCD Slowly Changing Dimension

SQL Structured Query Language

TCPA Telephone Consumer Protection Act

UAT User Acceptance Testing

6 | 110

2. Data warehouse

2.1. Overview
Data warehouse (DW or DWH) is a system

used for reporting and data analysis and is

considered a core component of business

intelligence. Data warehouse centralizes and

consolidates large amounts of data from

multiple sources. DWH allows organizations to

derive valuable business insights from their data

to improve decision-making. Over time, it builds

a historical record that can be invaluable to data

scientists and business analysts.

A typical data warehouse often includes the

following elements:

 ‣ A relational database to store and

manage data

 ‣ An extraction, loading, and transformation

(ELT) solution for preparing the data for

analysis

 ‣ Statistical analysis, reporting, and data

mining capabilities

 ‣ Client analysis tools for visualizing and

presenting data to business users

Chapter: Data warehouse — DWH architecture

7 | 110

2.2. DWH architecture

 > Figure 2-1 Simplified DWH architecture

Data Source BI ResultsData Flo�

D,T,),RTS

Data

Warehouse

ETL Tools

Reports

Data)ininH

Data

Visualisation

Operational

Systems

</>

SrL

Flat Files,

Sprea�sheets

ER�

OL,� ,nalysis

Chapter: Data warehouse — DWH architecture

8 | 110

 ‣ Data sources - These are all of the systems that capture and hold the transactional and

operational data identified as essential for analysis — for example, ERP, CRM, finance,

manufacturing and supply chain management systems, flat files, etc. Data can be structured,

semi structured or unstructured. Data sources can also include secondary sources, such as

market data and customer databases from outside information providers. As a result, both

internal and external data sources are often incorporated into DWH architecture.

 ‣ Stage Area - The source data must go through a cleansing process to eliminate any

inconsistencies and fill in any missing information. The data is then integrated to bring

together different sources into a uniform schema. This can be achieved through the use of ETL

tools, which can gather data from various schemas and carry out tasks such as extraction,

transformation, cleaning, validation, filtering, and loading of source data into a data

warehouse.

 ‣ Data Warehouse - The data is consolidated into a single, centralized repository known as a

data warehouse. This warehouse can be accessed directly or serve as a source for creating

data marts, which are tailored for specific departments within the organization. To assist in

managing the information, meta-data repositories store details on sources, access methods,

data staging, users, data mart schemas, and more. Each data mart contains information

specific to a particular function within an organization, and there can be multiple data marts

depending on the number of functions within the organization. In other words, a data mart

contains a portion of the data stored in the data warehouse.

 ‣ In the presentation layer, integrated data is efficiently and flexibly accessed to issue reports,

dynamically analyze information, and simulate hypothetical business scenarios.

Chapter: Data warehouse — DWH architecture

9 | 110

2.2.1. Kimball vs. Inmon

Two pioneers of data warehousing, named Bill Inmon and Ralph Kimball, had different approaches to

data warehouse design.

The Inmon approach, also known as the “top-down” approach, emphasizes the use of a data

warehouse as the centralized repository for all enterprise data. This approach focuses on capturing

all data from various sources and storing it in a single location, in order to make it available for

reporting and analysis. Dimensional data marts are then created based on the data warehouse

model.

On the other hand, the Kimball approach, also known as the “bottom-up” approach, emphasizes the

use of decentralized data marts. This methodology gives importance to creating smaller, specialized

data marts which are designed to meet the unique requirements of different business units or

departments. The data marts are then linked to the central data warehouse, allowing for a more

flexible and decentralized approach to data management.

It is difficult to say which one of these two methodologies is more widely used, as it likely varies

depending on the specific industry or organization. However, the Kimball methodology is often

considered to be more popular among practitioners, due to its focus on creating small, subject-

specific data marts that are tailored to the specific needs of different business units or departments.

This approach is seen as more flexible and better suited to the changing needs of the business, as

opposed to the Inmon approach, which emphasizes the centralization of data in a “corporate data

warehouse”. That being said, both methodologies have their own advantages and disadvantages

and organizations may use a hybrid approach which combines elements from both methodologies.

Ultimately, the choice of which one to use will depend on the specific needs and constraints of the

organization.

Chapter: Data warehouse — Dimensional modeling

10 | 110

2.3. Dimensional modeling
Dimensional modeling is a data structure technique optimized for data storage in a data warehouse.

The purpose of dimensional modeling is to optimize the database for faster retrieval of data. The

concept of dimensional modeling was developed by Ralph Kimball and consists of “fact” and

“dimension” tables.

 ‣ Fact table represents the measurements, metrics or facts of a business process. It usually

contains numerical data which needs to be analyzed. For example, a number of products sold

in a specific time period.

 ‣ Dimension tables are business descriptions which represent context of facts, for example,

product name.

2.3.1. Dimensional modeling process

The dimensional data model is constructed using a star schema, with a fact table at the center and a

number of dimension tables surrounding it. Dimensional modeling design usually follows a four-step

procedure:

1. Select the business process to model - the first step is to decide what business process

to model by gathering and comprehending business needs and available data (examples of

business processes are order processing, shipments, materials purchasing, etc.)

2. Declare the grain - precisely describe what each record in a fact table represents. The level of

detail associated with the facts in the fact table is expressed by the grains.

3. Identify the dimensions - adding a number of dimensions that represent all possible

descriptions that take on single values in the context of each fact in the fact table (examples of

common dimensions are date, time, product, customer, store, etc.)

4. Identify the fact - select the numeric facts which will be loaded into the fact table. In order to

identify the facts, we need to identify the business process’s key performance indicators (KPIs)

or find out what we are trying to measure.

Chapter: Data warehouse — Dimensional modeling

11 | 110

2.3.2. Benefits of dimensional modeling

The dimensional model has the following benefits:

 ‣ it has proven to be easier to understand because data is organized into coherent dimensions,

making it easier for business users to analyze the data

 ‣ it improves query performance:

 ‣ the dimensional model is more denormalized therefore it is optimized for querying

 ‣ the dimensional model’s predictable framework enables the database engine to make

substantial assumptions about the data

 ‣ it is easily extensible

2.3.3. Dimension tables

Columns in a dimension table represent dimensions that provide the necessary context for studying

the facts. Attributes that describe facts are typically stored in a dimension table. A dimension table

usually has numerous columns, each dedicated to a specific attribute.

The dimension table is not necessary in the third normal form (3NF). The primary key of a dimension

table is a single surrogate key that is a part of the composite primary key of the fact table.

2.3.3.1. Surrogate keys in dimension tables

The value of the primary key in a dimension table must remain unchanged. Also, it is highly

recommended that all dimension tables use surrogate keys as primary keys.

Surrogate keys are keys generated and managed inside the data warehouse rather than keys

extracted from data source systems.

There are several advantages of using surrogate keys in dimension tables:

 ‣ Performance – join processing between dimension tables and fact table is much more

efficient by using a single field surrogate key.

 ‣ Integration – in terms of data acquisition, the surrogate key makes it possible to integrate

data from multiple data sources even if they lack consistent source keys.

We should manage data versions – by keeping track of changes in dimension field values inside the

dimension table.

Chapter: Data warehouse — Dimensional modeling

12 | 110

Dimension tables must be designed in a way that they can be easily shared between multiple data

marts and cubes within a data warehouse. This guarantees that the data warehouse provides

consistent information for similar queries. Additionally, surrogate keys need to be used as the primary

keys of dimension tables in order to enable easier sharing of the dimension tables.

2.3.3.2. Slowly changing dimension

The attributes of a given record in the dimension table could be changed (for example: product

description, shipping address). This is known as slowly changing dimension and there are methods

for effectively addressing each type of slowly changing dimension.

 > Figure 2-2 SCD overview

Slowly Changing Dimension (SCD) Update Strategies

Initial

Load

Incremental

Load

Load New

Records

Replace

Old

Records

Initial Load

New Data

Type 1 SCD

Match

(*) Change detection

is optional with

Type 1 Updates

No Yes

Add New

Version

Mar& Old

Version

Obsolete

Load New

Records

Match

Change

Detection

No

New Data

Type 0 SCD

Initial LoadC

Trac&in8

Established

New Data

Type Q SCD

Initial LoadC

History

ColYmns

Established

Match

Change

Detection

No

Modi�y

Changed

Records

Load New

Records

Chapter: Data warehouse — Dimensional modeling

13 | 110

Types of slowly changing dimensions:

 ‣ Type 1 (SCD1) is used when the history of the data is irrelevant. The corresponding dimension

attribute is overwritten whenever the data in the data source is changed.

 ‣ Type 2 (SCD2) is used when the change of data in the data source is important and you want

to preserve the historic context of facts corresponding to the changing data. When data in the

data source changes, a new row is inserted into the dimension table. The previous row remains

unchanged.

 ‣ Type 3 (SCD3) happens when you want to learn about every fact before and after the

attribute changes. To deal with this, you can introduce a new attribute to the existing row

and update the value to both fields.

SID

0001

0002

0003

Sourc�$

Product ID

012

010

010

Product]\Z�

12 inch box

10 inch box

10 inch box

Product D�qc

12 inch ��ue� box

10 inch box

12 inch �a��e� box

EFF_START_DT

Jan-01-1753

Jan-01-1753

Mauy-12-06

EFF_E]D_DT

Dec-31-9999

May-12-06

Dec-31-9999

Product D�Z �Sourc�� Product D�Z �T\r+�t�

Product]\Z�

12inch box

10 inch box

Product ID

012

010

Product D�qc

12 inch ��ue� box

10 inch ��ue� boL

10 inch @\qt�d box

Product Name

10 inch box

16 inch box

SID

010

016

Product De=c

10 inch Pa=ted box

16 inch b`^]f box

Product Drm mSourcek Product Drm m�ar~etk

Product Name

10 inch box

16 inch box

Product ID

010

016

Product De=c

10 inch b`^]f bo�

10 inch Pa=ted box

16 inch b`^]f box

 > Figure 2-3 SCD1 example

 > Figure 2-4 SCD2 example

Chapter: Data warehouse — Dimensional modeling

14 | 110

There are a few more SCD types, mostly hybrid versions of the previous three, but they are not as

commonly used as Types 1-3 so we won’t explain them in detail.

2.3.4. Fact table

The fact table, which stores facts or measures of interest, is the center of the star schema. Typically,

facts are numbers which can be summarized, aggregated, or rolled up.

The fact table contains surrogate keys as a part of its primary key. Those keys are the foreign key of

the dimension tables, which looks at the exact version of the data in the dimension table.

2.3.4.1. Measure types

A fact table can store different types of measures such as additive, non-additive, semi-additive.

 ‣ Additive – as its name implies, additive measures can be summed across any of the

dimensions associated with the fact table. For example: summation of sales in a year.

 ‣ Semi-additive – semi-additive measures can be summed across some dimensions, but not

all. For example, balance amounts are semi-additive because they are additive across all

dimensions except time.

 ‣ Non-additive – non-additive measures cannot be summed across any dimensions, for

example, ratios. Whenever possible, it is a good idea to store the non-additive measure’s fully

additive components and add their sums to the answer set, before calculating the final non-

additive fact.

 > Figure 2-5 SCD3 example

Empty ID

1234

Name

Becham

Current_Department

Data Engineer

Previous_Department

Data Engineer

Empty ID

1234

1234

Name

Becham

Becham

Current_Department

Data Engineer

Software Engineer

Previous_Department

Data Engineer

Data Engineer

Before Change

After Change

Chapter: Data warehouse — Dimensional modeling

15 | 110

2.3.4.2. Types of fact tables

All fact tables are categorized by the three most basic measurement events:

 ‣ Transactional – Transactional fact table is the most basic one, in which each grain is shown

as “one row per line in a transaction,” like how each line item appears on an invoice. The most

detailed level of data is stored in a transactional fact table; consequently, it is associated with

a significant number of dimensions.

 ‣ Periodic snapshots – Periodic snapshots fact table stores the data that is a snapshot in a

period of time. Data from a transaction fact table, where you can select a time to acquire the

output, is used as the source data for the periodic snapshots’ fact table.

 ‣ Accumulating snapshots – The accumulating snapshots fact table describes the activity of

a business process that has a clear beginning and end. Therefore, this kind of fact table has

many date columns to reflect significant turning points in the process. Processing of a material

is a nice example of accumulating snapshot fact tables. When a step in handling the material

is complete, the appropriate record in the fact table for accumulating snapshots is updated.

2.3.5. Dealing with NULL values

We will describe two cases where null values should be avoided in a dimensional model. In these

situations, using default values instead of nulls is recommended.

2.3.5.1. Handling Null Foreign Keys in Fact Tables

The first case where nulls should be avoided is when we encounter a null value as a foreign key for a

fact table row. We have to do something in this situation because a null value in a fact table foreign

key field will violate referential integrity. There are a number of reasons why this could happen, but,

regardless of the reason, null values should be replaced with default values to prevent any further

issues.

When dealing with null foreign keys, we recommend using as much intelligence as possible during

the ETL process to select a default dimension row that has meaning for business users. Don’t just

create one default row and point all default scenarios to it. To provide the most comprehensive

understanding of the data possible, take into consideration each condition separately and provide as

many default rows as are necessary.

Some examples of default rows include Missing Value, Not Happened Yet, Bad Value, Not Applicable.

Usually, the ETL team assigns specific values such as 0, -1, -2, and -3 to the keys that describe these

alternatives.

Chapter: Data warehouse — Dimensional modeling

16 | 110

2.3.5.2. Handling Null Attribute Values in Dimension Tables

We should also avoid using nulls when we can’t provide a value for a dimension attribute in a valid

dimension row. The value of a dimension attribute may not be accessible for a variety of reasons,

including the following:

 ‣ Missing Value - The attribute was not present in the source data.

 ‣ Not Happened Yet – Due to issues with the timing of the source system, the attribute is not yet

available.

 ‣ Domain Violation - We either have a problem with the quality of our data or we don’t know

all the business rules that apply to the attribute. The data that the source system provided

is either not valid for the column type or falls outside the list of domain values that are

acceptable.

 ‣ Not Applicable - The attribute does not apply to the dimension row in question.

In most cases, the actual values that describe the null conditions can be found in the text attributes

of dimension tables. Try to think about how this will affect the BI tools down the road which need to

display your unique null value description in a report with a fixed format. Avoid things as filling the

default attributes with a space or a meaningless string of characters like @@@, as these could only

confuse business users. Provide as much meaning as possible for each dimension attribute’s default

values to provide context to business users.

2.3.6. Star schema

Star schema is a dimensional design system for a relational database, often used in data

warehouse systems. A fact table is located at the core of the star schema, and several dimension

tables surround it. The name “star schema” refers to the structure’s star-like appearance.

In the star schema, related dimensions are grouped as columns in dimension tables and used to store

the context of the facts stored in the fact table.

Chapter: Data warehouse — Dimensional modeling

17 | 110

2.3.6.1. Star schema example

The following is an example of a star schema based on dimensions and facts for the quarterly

balance of funds across products and customer segments. A periodic snapshot of the account

balance for accounts belonging to various products and customers will be uploaded at intervals of

quarters.

 > Figure 2-6 Star schema example

Let’s take a look at the star schema example above in greater detail:

 ‣ Fact table called F_BALANCE is at the center of the schema. The primary key of the fact

table contains four surrogate keys associated with dimension tables: CustomerKey, DateKey,

AccountKey and ProductKey. The fields Currency and Balance are used to store facts.

 ‣ Surrounding the fact table are dimension tables: D_CUSTOMER, D_DATE, D_PRODUCT and

D_ACCOUNT.

By examining several dimensions, star schema can assist business analysts in providing answers to

queries that might not have been raised during the design phase.

Star schema frequently stores data at a high level of detail, while aggregations allow data to be

rolled up at different levels of detail. The ability to study facts depends on the level of detail that the

fact table stores.

The star schema offers additional reporting possibilities the more dimension tables it contains.

Chapter: Data warehouse — Dimensional modeling

18 | 110

2.3.7. Snowflake schema

The snowflake schema is a variant of the star schema model where the dimension tables are

normalized by further dividing the records into additional tables. Star schemas’ dimension tables can

be normalized using the snowflaking technique. The resulting structure, after all the dimension tables

are completely normalized, resembles a snowflake with the fact table in the middle.

The snowflake schema includes one fact table which is connected to several dimension tables,

which can be connected to other dimension tables through a many-to-one relationship. Tables in a

snowflake schema are usually normalized to the third normal form. Each dimension table implements

exactly one level in a hierarchy.

 > Figure 2-7 Snowflake schema

Chapter: Data warehouse — Dimensional modeling

19 | 110

2.3.7.1. Snowflake schema advantages and disadvantages

Advantages:

 ‣ Due to normalization, which is the fundamental quality of a snowflake schema, there should be

little or no redundancy.

 ‣ Data quality will be exceptional, as normalization grants the benefit for the well-defined form

of tables/data.

 ‣ When queried with joins, clear and accurate data is retrieved.

 ‣ High data quality and accuracy helps in facilitating efficient reporting and analysis.

Disadvantages:

 ‣ Snowflake schema is a complex system, as it can have any number of levels of normalization

depending on the depth of the given database.

 ‣ If any new business requirement creates a need for denormalization, data quality will be taken

back and redundancy may occur. This may lead to restructuring the entire schema.

 ‣ Maintenance is difficult as the higher-level dimensions need to be expanded constantly.

 ‣ Low performance as it requires complex join queries.

Chapter: Data warehouse — ETL (Extract – transform – load)

20 | 110

2.4. ETL (Extract – transform – load)
ETL stands for “Extract - transform – load”. A typical ETL process collects and refines various types

of data which are then sent to a data warehouse (or data lake). By allowing businesses to consolidate

data from multiple data sources into a single, centralized location, ETL tools make data integration

strategies possible. Additionally, ETL tools make combining different types of data possible.

The ETL process consists of three steps that enable data integration from source to destination: data

extraction, data transformation, and data loading.

Source Systems

Destination

Load

Extract

Transform

 > Figure 2-8 ETL

2.4.1. Data extraction

During data extraction, ETL identifies the data and copies it from its sources in order to transport the

data to the target datastore. The data can come from structured and unstructured sources, including

documents, emails, business applications, databases, equipment, sensors, third parties, and more.

Although it can be done manually, hand-coded data extraction can be time-intensive and prone

to errors. This is where ETL tools come in - they automate the extraction process and create a more

efficient and reliable workflow.

Chapter: Data warehouse — ETL (Extract – transform – load)

21 | 110

2.4.2. Data transformation

The extracted data is raw in its original form; therefore, it needs to be cleansed, mapped and

transformed before it can be used in the final datastore. The process of data transformation consists

of several sub-processes:

 ‣ Cleaning— inconsistencies and missing values in the data are resolved

 ‣ Standardization — formatting rules are applied to the dataset

 ‣ Deduplication — redundant data is excluded or discarded

 ‣ Verification — unusable data is removed and anomalies are flagged

 ‣ Sorting — data is organized according to type

 ‣ Other tasks — any additional/optional rules can be applied to improve data quality.

Transformation is generally considered to be the most important part of the ETL process. Data

transformation enhances data integrity by eliminating duplicates and ensuring that raw data arrives

at its new destination fully compatible and ready to use.

2.4.3. Data loading

The newly modified data needs to be loaded into a new destination (data lake or data warehouse) as

the last step in the ETL process. Data can be loaded all at once (full load) or at scheduled intervals

(incremental load).

In an ETL full loading scenario, everything that comes from the transformation assembly line goes

into new, unique records in the data warehouse or data repository. Even though there are times when

this type of data loading is useful for research purposes, full loading creates datasets that increase

exponentially and can quickly become challenging to maintain.

Incremental loading is a less comprehensive but more manageable approach. When data is

loaded incrementally, it is compared to what already exists in the target datastore and only creates

additional records when new and unique data is discovered. This type of architecture allows smaller,

less expensive data warehouses to maintain and manage business intelligence.

Chapter: Data warehouse — Naming conventions

22 | 110

2.4.4. ETL vs. ELT

ETL and ELT differ on two main points:

 ‣ When the transformation takes place

 ‣ Where the transformation takes place

In a traditional data warehouse, data is first extracted from source systems (ERP systems, CRM

systems, etc.). Standardizing dataset dimensions is necessary for OLAP tools and SQL queries to

produce aggregated results. This means that the data must undergo a series of transformations.

Traditionally, these transformations have been done before the data was loaded into the target

system.

However, it has become possible to implement transformations within the target system as the

underlying data storage and processing technologies that support data warehousing advance.

Staging areas are used in both ETL and ELT processes. In ETL, these areas are found in the tool,

whether it is proprietary or custom. They are situated between the source system (for example, an

ERP system) and the target system (the data warehouse).

On the other hand, with ELTs, the staging area is in the data warehouse, and opposed to using an

ETL tool, the transformations are carried out by the database engine that powers the DBMS. As

a result, one of the immediate consequences of ELTs is that you will no longer have access to the

data preparation and cleaning functions that ETL tools provide to support the data transformation

process.

2.5. Naming conventions
Some advantages of having naming conventions are:

 ‣ readability

 ‣ developers can focus on the necessary details instead of naming things

 ‣ code is easier to maintain among multiple developers.

It is important to maintain one consistent letter case for both entity and column names - we will

be using all uppercase. To improve readability, underscores will be used as word separators. It is a

common practice to utilize nouns or noun phrases, in their singular form, as object names.

Chapter: Data warehouse — Naming conventions

23 | 110

Some systems enforce character limit on object names, e.g., Oracle 12.1 and below only allows for

a maximum object name length of 30 bytes. Therefore, abbreviations and acronyms may be taken

into consideration during the object naming process, despite the fact that they can often lead to

misinterpretation.

In logical models, it is advisable that object names are as self-explanatory as possible, i.e., most

words should be fully spelled out, except common abbreviations for longer words such as “dept” for

“department” or “org” for “organization”. However, abbreviations and acronyms are typically used in

physical models, to keep object names short.

Object type Naming convention Example

Dimension table D_* D_PRODUCT

Fact table F_* F_BALANCE

External tables (from imported csv files) EXT_* EXT_SALES

Temporary tables TMP_* TMP_STORE

Source tables S_* S_CURR_CODE

Auxiliary tables AUX_* AUX_WH

Packages PKG_* PKG_UTIL

Procedures PRC_* PRC_CLOSE_ORDERS

Functions F_* F_GET_NEXT

Jobs J_* J_CLOSE_ORDERS

Types T_* T_ASN_CTN

Triggers TRG_* TRG_FEE

Sequences SEQ_* SEQ_ITEM_ID

Views VW_* VW_CLIENT

Materialized views MV_* MV_ITEM_LOC

Index on partitioned column PIX_table_name_x (x = 1..n) PIX_HIRE_DATE

Index used specifically for ETL EIX_table_name_x (x = 1..n) EIX_TXN

Index created for reporting purposes RIX_table_name_x (x = 1..n) RIX_STATUS

Other indexes IX_table_name_x (x = 1..n) IX_DOC_ID

 > Table 2-1 Naming conventions

Chapter: Data warehouse — Naming conventions

24 | 110

Table columns:

 ‣ Column names need to be descriptive

 ‣ Column names containing the same information should be named the same in all the tables

 ‣ Column names with common features should have the same prefixes/suffixes, e.g.:

 > Time data (start_DATE, end_DATE or DATE_created, DATE_modified,...)

 > Account balance (accounting_BALANCE, loan_BALANCE, overdraft_BALANCE,...)

 > Transactional amounts (transactional_AMOUNT, overdraft_AMOUNT, installment_

AMOUNT,...)

 ‣ Columns containing different levels of data aggregation shouldn’t have the same name (e.g.,

daily, weekly, monthly average shouldn’t all be called average_balance_fc but daily_avg_

balance_fc, weekly_avg_balance_fc, monthly_avg_balance_fc, respectively)

Data format standardization:

 ‣ Data format should be the same for equal types of data

 > Financial data from source, for example: NUMBER (19,6)

 > Aggregated and summary data, for example: NUMBER (19,2)

 ‣ Currency columns should be VARCHAR2 (3 CHAR) because they contain ISO currency code

 ‣ Use CHAR instead of BYTE when defining string columns: 1CHAR <> 1BYTE for some special

characters (like Č, Š, ć, đ, Ž, ...)

 ‣ Oracle recommends using VARCHAR2 instead of VARCHAR

 ‣ VARCHAR2 is a dynamic data type and will save the exact number of characters contained in

input string unlike CHAR which saves fixed length

25 | 110

3. ETL tools
ETL tools are software solutions used to extract

data from various sources, transform it into

a consistent format, and load it into a target

system such as a data warehouse, database,

or business intelligence platform. Some popular

ETL tools include: Oracle Data Integrator (ODI),

Informatica PowerCenter, Microsoft SQL Server

Integration Services (SSIS), IBM InfoSphere

DataStage; open-source tools like Talend,

Pentaho… These tools vary in terms of their

features, pricing, and target audience. In this

chapter, we will give an overview of one ETL tool

– ODI.

When selecting an ETL tool, it’s important to
consider the specific needs of your organization
and the compatibility of the tool with your existing
systems and data sources.

Chapter: ETL tools — Oracle Data Integrator

26 | 110

3.1. Oracle Data Integrator
This is an example of a typical ODI workspace view. On the left, we can see all the projects we have

in our workspace (packages, mappings, scenarios, procedures, sequences...). When we click on an

object, it extends on the right part of the screen in a separate window. In this example we can see a

mapping and all corresponding objects.

3.1.1. Standard ODI model organization

It’s important to organize models well when setting up ODI development rules to ensure better

management, maintenance and structure.

Models should be broken down into logical units and subunits using ODI directory. If necessary, sub-

units could be broken down into more sub-units.

Models shouldn’t be renamed to avoid conflicting NAME and CODE values which can cause problems

with scripting. Space character shouldn’t be used in model names. Best practice is to name the

models after the database tables from which they are created.

Each model should have defined sub-models with tables included according to a specified mask to

ensure better structure and maintenance. Sub-models should be named after the specified schema

and mask.

Example of model structure inside directories prefixed with order numbers to ensure order and

structure.

 > Figure 3-1 Oracle Data Integrator

Chapter: ETL tools — Oracle Data Integrator

27 | 110

3.1.2. Standard ODI project organization

It’s important to organize projects well when setting up ODI development rules to ensure better

management, maintenance and structure.

Projects should be separated into logical units like “DSA”, “EML”, “DataMart 1”, “DataMart 2”, ...

“DataMart N”.

Inside each project, code should be broken down into logical units and subunits using the ODI

directory. If necessary, sub-units could be broken down into more sub-units.

Project and directory names should be spelled with capital letters to ensure better readability.

Projects shouldn’t be renamed to avoid conflicting NAME and CODE values which can cause

problems with scripting.

ODI objects, sequences, variables, functions and KMs should be saved inside each project only if they

are unique and specific for that project. Otherwise, they should be defined as global objects.

ODI objects, packages, mappings, reusable mappings and procedures should be placed in the

position where they are used according to the hierarchy of the project structure. Objects that are

used in multiple directories should be placed in separate directories under the project.

In ODI you can only move objects within the same project. If moving objects from one project to

another, you should use export and import functions.

 > Figure 3-2 ODI – model organization structure

Chapter: ETL tools — Oracle Data Integrator

28 | 110

Example of project structure inside directories prefixed with order numbers to ensure order and

structure:

 > Figure 3-3 ODI – project schema structure

Chapter: ETL tools — Oracle Data Integrator

29 | 110

3.1.3. Oracle Data Integrator development tips

1. Knowledge Module modifications before starting ODI development

Loading Knowledge Modules and Integration Knowledge Modules that come with standard ODI

installation should be modified before use in development. Modifications are made for:

 ‣ optimization

 > steps or queries are optimized to run faster

 > steps that are not necessary are removed

 > parameters are added to steps using options

 > hint support is added if necessary

 ‣ adjusting for organization specific work standards

 > for example, IKM for SCD2 flag IS_CURRENT for versioning 0/1 or Y/N

2. Knowledge Module modifications control while working

Developers can use existing knowledge modules but shouldn’t modify them. If there is a need

for KM modification, it should first be discussed with the development team to make sure there

is no other way to achieve the desired functionality. If there really is no other way to achieve

the necessary functionality, then the team designated to KM modifications should make the

needed adjustments.

If the stated procedure is not followed, there is a possibility of causing errors by modifying

existing KMs that are used in other parts of the project. Another possibility that can happen is

the growing number of KMs gets too big to manage and slows down the development.

3. Using capital letters for object name spelling

To achieve greater readability inside the repository structure all objects should be spelled with

capital letters. Doing this can also help with searching through repositories. Standardizing

naming logic also helps when using scripting languages. Renaming objects down the line is a

complex operation that can easily cause conflicts on other objects that reference them. That’s

why naming standards should be defined as soon as possible.

4. Optimization Context set-up

In case of conflicting context names (internal ODI code) on TEST and PROD environments you

should change the Optimization Context on the mapping and then regenerate the scenario

after migration.

Chapter: ETL tools — Oracle Data Integrator

30 | 110

After exporting a single or a set of mappings from one environment to another you can use a

script to set appropriate Context Optimization and a second script after that to regenerate the

scenarios. Using scripts speeds up and automates the whole process.

5. Object propagation through environments

All new ODI objects and their scenarios should be created on the DEV environment and then

propagated (export/import) on to other environments. By doing it this way you make sure that

matching objects on all projects have matching internal IDs and that all possible continuity

errors are avoided when propagating changes on existing objects.

6. Using Groovy scripts

Groovy is a scripting language used inside ODI that can be used for any generic purpose.

Using Groovy allows you to script bulk data modifications and processing. Using it should

be relatively simple but writing scripts requires in-depth knowledge of ODI processes and

structures. Groovy scripts should be used as much as possible because they speed up and

automate data integration processes.

7. Context Independent Design

Hardcoded Context should never be used in development, you should use Execution Context.

This way we make sure that the object propagates through the whole code while executing it

on a specific context and that the whole code executes on specified context.

8. Using SQL scripts in ODI procedures

SQL scripts for ETL tasks shouldn’t be used within ODI procedures. All ETL functionality should

be done only with mappings to enable easier maintenance and readability.

9. Testing mappings

For testing and optimization purposes, options for creating multiple physical designs should

be used before choosing the optimal design. A different physical design should be set on a

mapping inside of the package while making minimal adjustments during development and

simplifying regeneration of the optimal solution because it’s not deleted or modified.

10. Developer side mapping validation

After each change is made to the logical layer; the physical layer should be carefully

inspected. If the physical design is not generic, it can get invalidated or, even worse,

integration logic can get messed up without the developer even realizing.

Chapter: ETL tools — Oracle Data Integrator

31 | 110

11. Validation and mapping deployment into production

Two types of validation are required before deployment - physical and logical design

validation. It’s possible to write a groovy script for mapping validation with parameters that

allow you to validate a whole folder or subfolder at once. If a certain mapping has more than

one physical design and only one is supposed to go to production, all of the others should be

deleted to avoid conflicts in later development.

12. Internal code versioning

ODI allows internal code versioning by saving objects from work repository into master

repository.

For any object you can:

 ‣ Create a new version

 ‣ Inspect old versions

 ‣ Compare object versions to older versions

 ‣ Restore an older version of an object

In case the PROD environment is used for versioning, you should version only parts of the code

that are meant to go into production. In that case versions should be made:

 ‣ Version of old code before importing new

 ‣ or version of new code after the import

In this case you should have an overview of all versions that were put into production.

In case the DEV environment is used for versioning, you could create as many versions as you

need without migrating all of them to production. In this case, you should have an overview

of all the versions of an object including the ones that didn’t make it into production. To be

able to reconstruct older versions of production code, a careful track of versions that went to

production should be kept.

13. SQLtoODI – if you’re interested in faster development of ODI mappings, check out our

SQLtoODI tool.

https://www.agilos-it.com/DWH_concepts/SQLtoODI%20whitepaper.pdf

Chapter: ETL tools — Oracle Data Integrator

32 | 110

3.1.4. ODI naming conventions

3.1.4.1. Basic object naming rules

 ‣ Operators inside ODI mappings should be spelled with capital letters for better visibility.

 ‣ Object names shouldn’t contain diacritics!

 ‣ Prefix G is added to GLOBAL OBJECTS for better distinction, for instance a variable should

be spelled GV_%. Global objects can contain sequences, variables, knowledge modules, user

functions and reusable mappings. Global objects can be used in all projects.

 ‣ When creating a function, a descriptive and meaningful name should be used without using

the name of the function’s schema. This enables us to move functions between folders simply

by adapting the function code to the new environment.

3.1.4.2. Standard ODI mapping operator naming

Below is a picture of standard ODI operators.

 > Figure 3-4 ODI operators

Chapter: ETL tools — Oracle Data Integrator

33 | 110

 > Table 3-1 Standard ODI mapping operator naming

Operator Prefix NOTE

AGREGATOR AGG_

DATASET DTS_

DISTINCT DST_

FILTER FLT_

EXPRESSION EXP_

FLATTEN FLTN_ Big data operator

JAGGED JGD_ Big data operator

LOOKUP LK_

PIVOT PVT_

UNPIVOT UPT_

SPLIT SPL_

SORT SRT_

SUBQUERY FILTER SQF_

TABLE FUNCTION TBF_

JOIN JNR_

SET OPERATOR

UNION_%

Prefix should describe operator function
UNION_ALL_%

MINUS_%

INTERSECT_%

Chapter: ETL tools — Oracle Data Integrator

34 | 110

3.1.4.3. Standard ODI object naming

Below are examples of standard objects.

We have Logical and Physical view, in Logical view we can add elements from source to destination

tables and all needed transformational objects like aggregator, filter, expression, etc.

Physical view is generated automatically, example:

 > Figure 3-5 ODI mapping

 > Figure 3-6 ODI physical view

Chapter: ETL tools — Oracle Data Integrator

35 | 110

Procedure is a block of code that executes on database, when called it executes some predefined

task. Example.

 > Figure 3-7 ODI procedure

Chapter: ETL tools — Oracle Data Integrator

36 | 110

Packages can contain more mappings, procedures, sequences and it defines execution order of it’s

underlying objects.

 > Figure 3-8 ODI package

 > Figure 3-9 ODI scenario

Scenario is a snapshot of mapping at given time, when we make changes on mapping, we also need

to regenerate scenario.

Chapter: ETL tools — Oracle Data Integrator

37 | 110

Object Prefix NOTE

MAPPING

M_ IMPORT mapping

M_STG_
STAGE mapping

M_LOAD_ Another schema mapping

PACKAGE PKG_

SCENARIO Identical to its source object

REUSABLE MAPPING RM_

PROCEDURE P_

VARIABLE V_

SEQUENCE SQ_
If a DB sequence is used inside an
ODI their names must be the same.

USER FUNCTION F_

KNOWLEDGE
MODULE

RKM_XXX_ Reverse-engineering KM

LKM_XXX_ Loading KM

CKM_XXX_ Check KM

IKM_XXX_ Integration KM

JKM_XXX_ Journalizing KM

SKM_XXX_ Service KM

MODEL DB schema name

DATASTORE Same as DB table

LOAD PLAN LPN_

PROJECT Order number – Logical unit abbreviation. For example: “02-EML”.

FOLDER Order number – Logical unit abbreviation. For example: “01-KLIJENTI”.

 > Table 3-2 Standard ODI object naming

38 | 110

4. Change management
Businesses must constantly evolve and develop

new features to keep in touch with changes

in technology, shifts in laws, regulations

or underlying economic trends. Change

management helps businesses to deploy new

changes without any disruption or downtime.

Change management is the process of

systematically managing changes to a software

development project. It is crucial because it

helps ensure that changes are properly assessed

and evaluated for their impact on the project’s

schedule, budget, and quality. Effective

change management in development requires

collaboration among project stakeholders,

including developers, testers, project managers,

and business stakeholders.

By following a structured change management
process, development teams can minimize risks,
avoid unnecessary delays, and ensure that the
project is delivered on time, within budget, and to
the desired level of quality.

Chapter: Change management — Oracle Data Integrator

39 | 110

Objectives of change management process:

 ‣ Reduction of risk and impact

 ‣ Maintenance of current working state

 ‣ Communication and approval from management

 ‣ Effective change planning with optimized resources

 ‣ Reduction in number of incidents due to change execution

A basic overview of a change management process is as follows:

1. Creating a change request - Someone requests a change and describes the requirements

2. Reviewing the change request - The initial change request is reviewed by a change manager

or peer reviewer. What is the likelihood of success? Are the risks and benefits accurate? Is it

worth the effort?

3. Assessing the risks and making a change plan - A game plan for the change is developed

by the team - they document the expected outcomes, resources, timeline, requirements for

testing, and ways to roll back the change if necessary.

4. Approval of change - The change is approved after being reviewed by the appropriate

change manager.

5. Implementing the change -The team makes the change, documenting procedures and results

along the way.

6. Closing the change request - The change manager reviews and closes the change when

appropriate. They should state in their report whether the change was carried out successfully,

on time, within budget, etc.

Chapter: Change management — Oracle Data Integrator

40 | 110

Some best practices for modern change management:

 ‣ Learn about your company’s risk tolerance and regulatory obligations.

 ‣ Whenever possible, simplify and automate change management processes.

 ‣ Accept practices that make routine change the new normal.

 ‣ Make collaboration a priority.

 ‣ Minimize your risk by utilizing chaos engineering.

 ‣ Make it easier for developers and IT teams to process change requests.

 ‣ Utilize KPIs and change metrics to unlock learning.

Change management, as a process, is crucial for businesses in order to have a quality check and

deploy new changes seamlessly. Effective change management results in risk reduction, cost

optimization and faster time to market.

 > Figure 4-1 Change management

��

��

.�

D�

Z�

��

�� ���
	����
���
����������	

���(� �������	�����
����������	

.��5���������	������0��
�+�

/
0����
���
����*,
�

D��5**�E
,�EG���
���

Z��]/*,�/��	����	�����
���

����,E�����	�����
����������	�

41 | 110

5. Release management
The mission of release management is to create

a scalable, repeatable, and controllable process

that enables the organization to effectively

develop and deliver products. As a result, this

will lead to more consistency and the quality of

the releases will rise. Improving release quality

will lead to fewer incidents and fewer incidents

will lead to greater efficiency and stability.

The organization will be able to cope with the

frequent releases of software and hardware with

release management without compromising IT

stability.

A well-implemented release management model

has the following benefits:

 ‣ Delivering high-quality releases which are

scalable for the future

 ‣ Documented policies and procedures to

ensure that all stakeholders are aware of

the requirements for changes and releases

 ‣ A consistent, iterative and efficient process

Development, test and production environments

are at the center of the release management

lifecycle.

Chapter: Release management — Release management activities

42 | 110

5.1. Release management activities

5.1.1. Release policy

The release policy outlines the scope, strategy, and standards of the release practice within the

organization. Additionally, it specifies the release standards that should be adhered to, including the

types of releases and their frequency:

 ‣ Minor releases - which are characterized by small enhancements and fixes, are done more

frequently.

 ‣ Major releases - which entail large portions of new functionalities, are less frequent and

require extensive planning.

 ‣ Emergency releases - which are executed in response to an incident or a significant problem

that requires prompt resolution.

It also includes the release naming conventions and the relationship with other ITIL processes and

CMDB to ensure the smooth operation and effective management of the release process.

5.1.2. Release planning

The planning stage is the first step in the release management and this is where the entire release is

structured from start to finish. Making a robust release plan will make everyone able to stay on track

and ensure that standards and requirements are met properly.

Release manager creates a workflow which the entire team and key stakeholders can use throughout

a release. The workflow should provide a quick overview of the release’s stages and the roles played

by each team member. It should entail timelines, delivery dates, requirements and the overall scope

of the project.

Once the plan is sketched out, it should be presented for review to all relevant stakeholders,

including the team, product manager and high-level leaders. They will give out their feedback on

any deficiencies or issues they observe in the scope or requirements. Once the plan is approved and

finalized, it’s time for the next phase.

5.1.3. Design and development

The design and development phase encompasses the implementation of the software design and

development in accordance with the specifications outlined in the requirements.

Chapter: Release management — Release management activities

43 | 110

5.1.3.1. Development methods

The primary objective of change management is to minimize risk, which aligns well with the

sequential waterfall method. The agile methodology, characterized by its iterative and incremental

delivery of individual software components, can also be integrated with the ITIL release management

model with some modifications. Ultimately, ITIL advocates for the utilization of best practices that are

most appropriate for the organization and its specific needs.

 ‣ Waterfall – delivering new functionalities every two months or quarterly

 ‣ Agile – delivering every two weeks

Requirements

Design

Testing

Re�e�se

De�e���ment

 > Figure 5-1 Waterfall method

 > Figure 5-2 Agile method

Develop

functionality 1

Integrate

and test

Develop

functionality :

Integrate

and test

...

Develop

functionality N

Integrate

and test

Demo release

Make changes

Are

functionalities

complete?

Client’s

feed�ack

System testing

Release

Yes

No

Ne)t iteration

Chapter: Release management — Release management activities

44 | 110

 ‣ Hybrid model – combination of previous two models (development and independent

verification and validation is iterative while the rest of the phases in the life cycle follow a

waterfall approach)

Requirements

Design

Testing

Release

Development

Re+ne

requirements

Iterative

development

Unit testing

5.1.4. Build and configure the release

According to the plan created in the planning phase, the release manager can initiate the execution

of the plan by engaging necessary resources from infrastructure, application, and other technical

domains. This allows for the construction of the release in a controlled and orderly manner. During

this phase, initial testing is conducted to assess the fundamental quality of the release.

5.1.5. Fit for purpose testing

Fit for use and fit for purpose are key measures for determining whether the release satisfies its

objectives as outlined in the requirements. Essentially, these measures assess whether the release

functions as intended. Therefore, a direct correlation between the business requirements and the new

functionality should be established. Another method of determining whether the release meets the

expectations of the stakeholders is user acceptance testing.

 > Figure 5-3 Hybrid model

Chapter: Release management — Release management activities

45 | 110

5.1.6. Release acceptance testing

5.1.6.1. Quality Assurance (QA)

To ensure the provision of a high-quality, production-ready product that aligns with the business

requirements, the release must go through a structured quality assurance (QA) process. This process

should consist of performance testing and user acceptance testing (UAT). The testing process

may identify bugs within the release, in which case, the project team must evaluate and resolve

these issues, either through bug fixes or workarounds. Ultimately, the QA team will produce a QA

Acceptance Report, in which they either approve the release or decline it based on identified bugs

that could cause problems in production.

5.1.6.2. Operational readiness (OR)

Operational readiness (OR) is the final step prior to implementing the release into production. The

objective of OR is to guarantee that all aspects of the release have been tested, reviewed and

documented. This documentation includes release notes, any known bugs and their corresponding

workarounds, service level documentation, training and implementation plans and technical

operational readiness testing (ORT). ORT is a thorough process which verifies that the infrastructure,

network and databases operate in accordance with the business requirements. It also confirms that

monitoring tools are in place and that all modifications to services and Configuration Items (CIs)

have been incorporated or updated in the Configuration Management Database (CMDB).

5.1.7. Roll-out planning

Roll-out planning is a crucial aspect in ensuring the stability of all applications and systems

development by adhering to a consistent and repeatable planning process. This procedure

guarantees that the necessary resources are available, that detailed testing has been conducted,

and that documentation has been prepared. A high-level plan is essential for every release and

should encompass all test plans, acceptance criteria, and release deliverables.

Chapter: Release management — Release management activities

46 | 110

5.1.8. Communication, preparation and training

The release manager is responsible for making sure that the following is included with the release:

 ‣ Support and escalation plan – document which describes what to do in case of any issues

 ‣ Training plan – document explaining usage of new functionalities to users

 ‣ Implementation plan – document explaining specifics regarding the implementation

(dependencies, order of execution...)

 ‣ Communication plan – document which describes how to inform all stakeholders of all possible

issues relevant to the release

5.1.9. Distribution and installation

5.1.9.1. Implementation

Release management works together with change management to ensure that the necessary steps

for effective implementation are completed before obtaining approval to implement the changes.

These steps (plans outlined under Communication, preparation and training) are documented within

the Request for Change (RFC) document. Once this document has been completed and approved by

the Change Advisory Board (CAB), the release can be deployed to production in accordance with the

implementation plan.

5.1.9.2. Post-implementation

The primary objective of the post-implementation phase is to finalize the project. During this

phase, all project documentation is collected, evaluated, and archived. A post-implementation

review meeting may also be conducted (if there were any significant issues with any of the release

management activities) to gather insights and acquire knowledge to enhance future releases.

Another important thing during this phase is closely monitoring the new service packages to make

sure that they meet the service level goals that were set during the design phase. If the new service

fails to meet its service level goals, it will need to be updated to improve its performance and it will

go through the whole process again. In addition, it is necessary to monitor the value of the service

to the clients and the business. There may come a time when the service is no longer relevant to the

company’s corporate strategy or no longer adds value to the business. In that case, the service will

be retired.

Chapter: Release management — Release management activities

47 | 110

5.1.10. Version control

Version control and source control, also referred to as revision control, is the process of managing

modifications to documents, programs, large websites, and other information that is stored as

computer files. It is commonly utilized in software development where a team of individuals may

modify the same files. These changes are typically identified by a number or letter code, known as a

“revision”. Each revision is linked to a timestamp and the individual responsible for the modification.

Revisions can be compared, restored, and, with certain file types, merged. Version control systems

typically operate as standalone applications but revision control features are also integrated

into various types of software such as word processors like Microsoft Word, and various content

management systems. Popular version control systems for software development projects include Git,

SVN, Mercurial, and CVS. Software tools for revision control are vital for organizations where multiple

developers are working on the same projects.

5.1.11. Roles and responsibilities

Key roles and responsibilities of a release manager are:

 ‣ Managing risks and resolving challenges that impact release scope, quality, and schedules

 ‣ Planning release windows and cycles across portfolios, components

 ‣ Communicating crucial release plans and changes

 ‣ Measuring and monitoring progress to achieve a timely software release within defined

budgetary limits and defined quality standards

 ‣ Coordinating processes between different teams (possibly in various locations)

 ‣ Communicating necessary release details to business teams

 ‣ Managing, planning, and negotiating release activities

 ‣ Leading and coordinating checklist and deployment plan execution

 ‣ Deciding which automation and release management tools (or scripts) will be used for the

construction, continuous integration, and deployment of software release

 ‣ Ensuring that requirements are clear across dependent project streams with an effective

release

 ‣ Validating release notes

Chapter: Release management — Optimal release management model

48 | 110

5.1.12. Release management and Project management

The main difference between these two is that the release management process can be a part of a

project, while project management focuses on a project’s higher dimensions. A release manager’s

primary responsibility is coordinating with different stakeholders for requirements, testing, and

making a release calendar while taking care of possible interdependencies. Release managers ensure

the synchronous running of day-to-day processes and their primary aim is to enable continuous

delivery of a solution in the hands of the customers as soon as possible. Apart from that, they ensure

quality benchmarks are met. A project manager takes care of resource management to make it

remain within budgetary limits and quality standards. Their jobs may or may not produce a release of

the projects they oversee. Project managers deliver one or more components for release that they are

responsible for.

5.2. Optimal release management model

Program management

Roles and responsibilitiesPolicy

Pro!ect management

CMDB and

version control

Build and

config release

UAT

Growth and

maintenance

Deployment

Communication

and training

Quality

 > Figure 5-4 Optimal RM model

Chapter: Release management — Optimal release management model

49 | 110

As shown in picture, the optimal release management model consists of:

 ‣ Program management – there should be an overall program that manages all data

warehouse releases

 ‣ Policies and Roles and responsibilities make sure everything is done compliantly and guided

by role division

 ‣ Project management circle makes sure all planning activities are followed up and checked

after completing a task in the inner circle:

 > CMDB and Version Control - tasks that need to be checked before configuring the

release

 > Build and Configure Release - make sure the release follows the organization standard

requirements and development processes

 > UAT (User Acceptance Testing) - testing tasks (like quality assurance and operational

readiness testing)

 > Communications and Training – training users in using new features

 > Deployment – installation to next environment after successful testing and training; this

block should also describe how to act when release needs to be rolled back

 > Growth and Maintenance – describes how to act on growth and how to provision

servers and checks on availability in the future

 ‣ Quality – in the center of release management – this is what it’s all about – delivering releases

on scope and on schedule

50 | 110

6. SQL and procedural
languages
SQL (Structured Query Language) is a domain-

specific language designed for managing

relational databases. It is a declarative

language, meaning that you tell it what you

want to do (e.g., “select this data” or “insert this

data”), and the database management system

figures out how to do it.

Procedural languages, on the other hand, are

programming languages which allow you to

write code that specifies how to perform a

series of steps or procedures to accomplish a

specific task. There are many domain-specific

procedural languages designed for managing

relational databases - most widely known are

PL/SQL (used by Oracle databases) and T-SQL

(used by Microsoft SQL Server databases).

The same as with ETL tools and ODI, we will

concentrate on Oracle specific language PL/SQL

in this chapter, but similar best practices can be

applied to other procedural languages used for

working with databases.

Chapter: SQL and procedural languages — Structured Query Language (SQL)

51 | 110

6.1. Structured Query Language (SQL)

6.1.1. Best practices for writing SQL queries

SQL queries are used to get data from the database. Queries can be written in multiple different

ways with different levels of efficiency. Inefficient queries can take up database resources, reduce

response times or even worse, make the database unresponsive. This is why it’s very important to

write queries in the most efficient way possible. Here are some tips for writing efficient queries.

 ‣ Query formatting

Properly formatting your SQL queries is very important. It gives you greater readability which

makes code overview and debugging much easier. Here are a few tips for SQL formatting:

 > Each SQL command should be in a new line

 > Each key command should be spelled with capital letters

Examples of bad formatting:

select employee_id ,first_name , last_name from hr.employees join
hr.departments on employees.department_id = departments.department_
id where salary < 10000;

SQL query written above is difficult to comprehend because it’s written in one line and spelled

with lowercase letters. The same SQL query should be written like this:

SELECT employee_id, first_name, last_name
FROM hr.employees JOIN hr.departments
ON employees.department_id = departments.department_id
WHERE salary < 10000;

Chapter: SQL and procedural languages — Structured Query Language (SQL)

52 | 110

 ‣ When using SELECT command all column names should be stated instead of *

SELECT * command is used when it’s necessary to get all of the columns from a table. Unless

it’s necessary to retrieve all columns, this should be avoided because it’s inefficient and slows

down SQL performance. Example:

SELECT *
FROM hr.departments;
Only the columns needed should be specified:
SELECT department_id, department_name
FROM hr.departments;

 ‣ If possible, you should avoid using DISTINCT

Keyword DISTINCT is used to eliminate duplicate results from the database. This can also

significantly slow down database performance and should be avoided if possible. As an

alternative you could use GROUP BY command to achieve the same result. Example:

SELECT DISTINCT postal_code
FROM hr.locations;

SELECT postal_code, COUNT (1)
FROM hr.locations
GROUP BY postal_code;

 ‣ Using functions should be avoided if possible

SQL functions can be very useful but they are also very inefficient because they ignore indexes

which slows down database performance. If possible, using functions should be avoided.

Example:

SELECT first_name, last_name
FROM hr.employees
WHERE substr(last_name, 1, 1) = ‘K’;

Chapter: SQL and procedural languages — Structured Query Language (SQL)

53 | 110

SELECT first_name, last_name
FROM hr.employees
WHERE last_name like ‘K%’;

The second query executes much faster because the function is omitted and indexes are used.

 ‣ INNER JOIN should be used instead of WHERE for joining tables

When using WHERE operator to join tables the database performs a cartesian join which joins

whole tables. This can be resource demanding when working with large tables and it’s more

efficient to use INNER JOIN which connects only the specified rows. Example:

SELECT employee_id, first_name, last_name
FROM hr.employees, hr.departments
where employees.department_id = departments.department_id;

SELECT employee_id, first_name, last_name
FROM hr.employees JOIN hr.departments
ON employees.department_id = departments.department_id;

The second query is more readable and is written in ANSI syntax which is the preferred way of

writing queries.

 ‣ If possible, you should avoid starting LIKE statements with %

If the % symbol is used at the beginning of a LIKE statement the database does not use indexes

and instead uses a full table scan to fetch rows which slows down execution. LIKE statements

should be carefully constructed and if only rows starting with a certain letter are needed it’s

important to place the % symbol in the right place. Example:

SELECT first_name, last_name
FROM hr.employees
WHERE last_name like ‘%K%’;

Chapter: SQL and procedural languages — Structured Query Language (SQL)

54 | 110

SELECT first_name, last_name
FROM hr.employees
WHERE last_name like ‘K%’;

The first query uses full table scan to fetch rows while the second one uses indexes and

executes much faster.

 ‣ EXISTS/NOT EXISTS should be used instead of OUTER JOIN

It’s proven that using EXISTS/NOT EXISTS instead of LEFT JOIN with WHERE clause in queries

yields better execution speeds. Example:

SELECT departments.department_id, departments.department_name
FROM hr.departments LEFT JOIN hr.employees on departments.
department_id = employees.department_id
WHERE employees.department_id is NULL;

 The same query using the NOT EXISTS clause runs faster:

SELECT departments.department_id, departments.department_name
FROM hr.departments
WHERE NOT EXISTS (SELECT 1 FROM hr.employees WHERE departments.
department_id = employees.department_id);

 ‣ OR operator should be avoided when filtering results

OR operator should be avoided when combining more where clauses for result filtering. The

UNION operator should be used instead. Databases cannot process OR operators within a

single operation which is why it often slows down execution. Example:

SELECT first_name, last_name
FROM hr.employees
WHERE last_name like ‘K%’ OR last_name like ‘C%’;

Chapter: SQL and procedural languages — Structured Query Language (SQL)

55 | 110

SELECT first_name, last_name
FROM hr.employees
WHERE last_name like ‘K%’
UNION
SELECT first_name, last_name
FROM hr.employees
WHERE last_name like ‘C%’;

Separating the query into two separate queries using the UNION operator allows the database

to use indexes and improves execution speeds.

 ‣ Getting familiar with the data

Getting familiar with the data you’re working with greatly improves your query writing ability.

Knowing things like indexes, primary key columns, partitions, data and business logic can help.

 ‣ Understanding SQL query execution order

It’s important to understand the execution order of your query or the way the database gets

to the final result to be able to write the most efficient command. The sooner we reduce the

number of selected rows from the operation set the better it’s going to execute.

1. FROM and JOIN operators fetch full referenced tables. This represents the biggest

possible scope of data that can be returned. This is why you should try to reduce the

possible data set as soon as possible

2. WHERE filters the data

3. GROUP BY aggregates the data

4. HAVING filters out unwanted data from the aggregated data

5. SELECT fetches specified columns

6. SET operators (UNION, MINUS, INTERSECT (ALL)) combine the results of component

queries

7. ORDER BY sorts data

It’s possible that the database administrator suggests different execution order in some

specific cases but the most commonly used is the one stated above.

Chapter: SQL and procedural languages — Structured Query Language (SQL)

56 | 110

6.1.2. Execution plans

When we write SQL and want to execute it, what happens behind the scenes is that the query

optimizer creates steps to execute your query against the database.

Basically, the optimizer’s job is to take SQL statements and decide how to fetch the data in the

quickest manner.

Before running a query, we want to make sure that we have gathered statistical information about all

underlying objects. This can have a significant impact on query execution speed.

Optimizer statistics can be collected automatically by the database or they can be collected

manually by using the DBMS_STATS package.

Typically, the output of the EXPLAIN PLAN statement is stored in a table called PLAN TABLE, which

can be queried to determine the execution plan for subsequent statements.

Output

Generates

Multiple Plans and

Compares Them

Statistics

Final Plan with

Lowest Cost

Parsed Representation

of SQL Statement

Input

Optimizer

Plan K

GR

HJ

HJ

Plan 1

GR

NL

NL

Plan K

GR

HJ

HJ

1 0 1 1 0 0 1 0 0

 > Figure 6-1 Optimizer

Chapter: SQL and procedural languages — Structured Query Language (SQL)

57 | 110

Let’s see this example of an execution plan. First, let’s take a look at these main indicators of

performance: Cost and Cardinality.

Cardinality is the estimated number of rows the step will return. Based on statistics, the optimizer

concluded that the query will return 233 rows.

Cost represents how many resources (CPU or I/O) the query will require to run (it affects on speed).

Optimizer calculates a relative cost for each plan and then picks the plan with the lowest cost.

6.1.2.1. Join methods

Oracle supports three join methods:

 ‣ Nested loop

 ‣ Hash join

 ‣ Merge join

 > Figure 6-2 Execution plan

Chapter: SQL and procedural languages — Structured Query Language (SQL)

58 | 110

6.1.2.1.1. Nested loop join

A simple nested loop join algorithm reads rows from the first table (Source table) in a loop one at a

time, passing each row to a nested loop that processes the next table (Destination table) in the join.

This process is repeated as many times as there remain rows to be joined. This join strategy is useful

for joining two tables with small subsets of data or when one of the tables is significantly smaller in

size.

6.1.2.1.2. Hash join

The hash join is similar to a nested loop join. Oracle first builds a hash table to facilitate the operation

and then loops through that hash table. Oracle accesses one table (usually the smaller) and builds a

hash table on the join key in memory. Then, it scans the other table in the join (usually the larger one)

and searches the hash table for matches.

TABLE ACCESS BY INDEX ROWID – means that not all information is contained in the index (columns

needed are not part of the index). So, it takes the pointer to table data (rowid) and looks it up (more in

“Index scans” chapter).

 > Figure 6-3 Execution plan - hash join

Chapter: SQL and procedural languages — Structured Query Language (SQL)

59 | 110

6.1.2.1.3. Sort-Merge Join

Sort-merge proves effective when both of the row sources are large (without the where clause or has

inequality conditions such as, <, <=, >, or >=) or in the cases where there are missing indexes on join

keys.

The sort merge operation is often used together with parallel query because a sort merge join always

performs full-table scans and sorts data.

6.1.2.2. Index Scans

Regardless of the index structure, an Oracle index can be thought of as a pair consisting of a

symbolic key, paired with a ROWID.

Types of index access:

 ‣ the index unique scan,

 ‣ the index range scan,

 ‣ index full scans and index fast full scans.

 > Figure 6-4 Sort-merge join

Chapter: SQL and procedural languages — Structured Query Language (SQL)

60 | 110

6.1.2.2.1. Unique Scan

In index unique scan, Oracle reads index nodes and returns ROWID for the appropriate unique row

from the SQL statement. An index unique scan starts processing and stops as soon as it finds the

first matching record; no other matching record is possible. This makes it faster than the range scan.

As the name suggests, it works only for unique index values - if we have a non-unique index, then

another approach is used. Example is index on table’s primary key.

Select ID from Customer where ID = 5111;

This is a fast way of accessing data because disk I/O is extremely reduced.

6.1.2.2.2. Range Scan

An index range scan is used when the SQL statement uses a non-unique index, one example would be

an SQL statement that contains a restrictive clause. It returns a range of ROWID’s rather than only

one.

Select
 Id,
 customer_name from
 Customer
where
 customer_name = ‘Cust1’;

Where Customer_name is part of an index.

Chapter: SQL and procedural languages — Structured Query Language (SQL)

61 | 110

6.1.2.2.3. Index full scans and index fast full scans

Fast full scan is a very fast way of data access because there is no need to access table data, all the

data needed is located in the index. Index fast full scan reads all of the data blocks in the index, in

data block order, and index full scan does not read all of the blocks in an index. Although it is a fast

way of data access, it comes with some requirements that need to be satisfied in order to be used.

Some of them are:

 ‣ the index must contain all columns needed for the query

 ‣ at least one column in the index key has NOT NULL constraint

 ‣ a row containing all nulls must not appear in the query result set

Example:

Select count(*) cnt, customer_name from Customer
Group by customer_name
;

6.1.2.3. Adaptive plans

Optimizer can change the execution plan “on the fly”, once there is a change in underlying tables

(more data is loaded or deleted), Oracle changes execution plan (for example, switches from merge

join to hash join because some data was deleted and index was added). That is why execution plans

can differ before and after the execution of sql. This feature is called Adaptive plans.

Chapter: SQL and procedural languages — Structured Query Language (SQL)

62 | 110

6.1.2.4. Hints

There are cases when the Oracle optimizer doesn’t get things right and executions are suboptimal,

taking too much resources and time. In those cases, we need to use custom hints to enhance

performance.

Mostly used hints are:

 ‣ Append

/*+APPEND*/

This hint is used when we want data to be inserted quickly, without additional checks. The

new records are inserted above the table’s high watermark (HWM). It is also called direct path

insert.

 ‣ Parallel

The parallel hint is used if we are required to retrieve data as fast as possible by using multiple

threads. We can specify the degree of parallelism (number of threads to be used). This hint

should be used carefully because it consumes a lot of server resources.

Select /*+ parallel(2)*/ First_name, Last_name from Table1;

 ‣ Index Hints

 > Index

If we’ve noticed that there is an existing index on the table and that the optimizer missed to use

it, we can try and force the usage of that index by adding this line after the keyword “SELECT”:

/*+ INDEX (Employee IDX_Employee_xxx*/

 > No_index

Also, there is another case, when we don’t want to use the index because of performance

issues, then we use the no_index hint.

Chapter: SQL and procedural languages — Structured Query Language (SQL)

63 | 110

/*+ NO_INDEX(t1 id1) */

 ‣ Nested loop

If we think that using nested loops while joining tables could improve performance, we can use

this hint:

/*+ USE_NL(t1 t2) */

 ‣ Merge

When we want to force an optimizer to join tables with “SORT” and “MERGE” operations.

USE_MERGE(t1)

 ‣ Full

/*+ FULL(t1) */

The full hint is used when we want to force the optimizer to use full table scan.

 ‣ Use hash

Used when we want to enforce join hash method of two tables

/*+ use_hash(t1,t2) parallel(e, 4) parallel(b, 4) */

It is important to mention that we need to be careful when using hints because we can make

execution even slower - it is recommended only for experienced developers. Most of the

time, the optimizer uses the best strategy and the only thing we need to do is to check if the

statistics are up to date.

Chapter: SQL and procedural languages — PL/SQL (procedural language extension to Structured Query Language)

64 | 110

6.2. PL/SQL (procedural language extension to Structured
Query Language)

6.2.1. PL/SQL best practices

1. Optimize SQL in PL/SQL programs

 ‣ You can take advantage of PL/SQL-specific enhancements for SQL like BULK COLLECT

and FORALL, cursor variables and table functions. Performance with multi-row SQL

operations is improved by an order of magnitude because much less overhead is used for

context switching.

 ‣ Hide your SQL statements behind a procedural interface so that you can easily change

and upgrade. Avoid repetition and dispersion.

 ‣ We need to assume change with data structures is going to happen and we need to build

that assumption into our code with anchored declarations. %TYPE for scalar structures

and %ROWTYPE for composite structures.

 ‣ Write readable, maintainable code. PL/SQL allows you to write very readable, self-

documenting and easily maintained code. This should be a primary objective for any

program.

2. Handle PL/SQL compile-time warnings and PL/SQL runtime errors in your programs

 ‣ Whenever you log an error, capture the call stack, error code, error stack, and error

backtrace.

 ‣ Send an application-specific error message with RAISE_APPLICATION_ERROR

 ‣ re-raise an exception in your exception handler because the outer block doesn’t know an

error has occurred

3. Comment your code

Structured and orderly written code greatly aids in reading and understanding the code,

however, an excellent programmer also uses a lot of comments in their code. It can be

straightforward to see what the code does, but understanding the intention behind the code

can be challenging if it is not properly formatted and commented on. When writing comments,

approach it as if you were to go through the code with a junior who has basic technical

knowledge but almost no business knowledge. In such a situation, the focus is more on

explaining why the program works and not how - you should explain the business need for the

code, why a certain piece of code is written one way while another way is possible, why is the

Chapter: SQL and procedural languages — PL/SQL (procedural language extension to Structured Query Language)

65 | 110

following piece of code important, why a certain part is not optimal, what is the most sensitive

part of the code, etc. Reading this text might lead you to the conclusion that there are not too

many comments but the number of comments is a matter of perspective, there can be too few

or too many. The purpose of comments is not to describe the code, because that’s what the

code is for. Comments should be used to explain why the code is written in a certain way.

When writing comments, a good idea would be to use a tool like PLDoc.

PLDoc (Programming Language Documentation) is a tool that generates documentation from

code comments written in a specific format. It is often used instead of plain comments for

several reasons:

 ‣ Consistency: PLDoc allows for a standardized format for documenting code, which can

improve the consistency and quality of the documentation.

 ‣ Automated Generation: PLDoc automatically generates documentation from the code

comments, reducing the amount of manual effort required to maintain up-to-date

documentation.

 ‣ Improved Readability: PLDoc documentation is often easier to read and navigate, as it is

generated in a structured format such as HTML or PDF.

 ‣ Increased Discoverability: PLDoc makes it easier to find information about specific code

elements, as the documentation is linked to the code and organized in a logical manner.

Overall, PLDoc provides a way to generate high-quality, up-to-date documentation from code

comments, making it a useful tool for improving the maintainability and understandability of

software projects.

There are some rules which you have to follow in order to provide PLDoc comments:

 ‣ The comment text will be treated as HTML. You can use HTML tags, formatting, links etc.

 ‣ The first sentence of the comment (ending with a dot) becomes the “summary” for the

comment, shown in the Summary part of the generated documentation.

 ‣ All tags (if any) must be placed after the main comment text.

PLDoc accepts the following two comment types:

/* Checking the partner record whether it exists or not */
 FUNCTION check_partner(id IN VARCHAR2) RETURN NUMBER;

Chapter: SQL and procedural languages — PL/SQL (procedural language extension to Structured Query Language)

66 | 110

/** Checking the partner record whether it exists or not */
 FUNCTION check_partner(id IN VARCHAR2) RETURN NUMBER;

and accepts this as well:

--Checking the partner record whether it exists or not
 FUNCTION check_partner(id IN VARCHAR2) RETURN NUMBER;

but doesn’t accept this:

--
 --Checking the partner record whether it exists or not
 --
 FUNCTION check_partner(id IN VARCHAR2) RETURN NUMBER;

Here are the most important notation conventions:

 ‣ Paragraphs

 > Paragraphs are separated by a blank line.

 ‣ General lists

 > Bullet lists (HTML)

 ▷ Using * symbol

* bullet list item

 > Numbered lists (HTML)

 ▷ Any number from 1..9 is allowed, which allows for proper numbering

in the source. Actual numbers in the HTML or LaTeX however are re-

generated, starting at 1.

Chapter: SQL and procedural languages — PL/SQL (procedural language extension to Structured Query Language)

67 | 110

1. numbered list item

 > Description lists (HTML <dl>)

$ description list item 1
 : description list item 2

 ‣ Tables

 > A table-row is started by a | sign and the cells are separated by the same

character. The last cell must be ended with |. Multiple lines that parse into a

table-row together form a table. Example:

 | Algorithm | Time (sec) |
 | Depth first | 1.0 |
 | Breadth first | 0.7 |
 | A* | 0.3 |

 ‣ Code blocks

 > Fenced

 ▷ The block is preceded and followed by a fence line. The traditional PlDoc

fence line is ==.

==
 small(X) :-
 X < 2.
 ==

 > Indented

 ▷ The block must be indented between 4 and 8 characters, relative to the

indentation of the last preceding non-blank line.

Chapter: SQL and procedural languages — PL/SQL (procedural language extension to Structured Query Language)

68 | 110

 ‣ Line breaks

 > A line break may be added by ending the physical line with the HTML line break,

 or
.

For further information about using PLDoc, please refer to the user guide.

https://pldoc.sourceforge.net/maven-site/docs/Users_Guide/

Chapter: SQL and procedural languages — PL/SQL (procedural language extension to Structured Query Language)

69 | 110

4. Write headers for your procedures, one nice example is below

/***

Procedure: dbo.usp_DoSomeStuff

Create Date: 2018-01-25

Author: Joe Expert

Description: Verbose description of what the query does goes here. Be specific and don’t be

 afraid to say too much. More is better, than less, every single time. Think about

 “what, when, where, how and why” when authoring a description.

Call by: [schema.usp_ProcThatCallsThis]

 [Application Name]

 [Job]

 [PLC/Interface]

Affected table(s): [schema.TableModifiedByProc1]

 [schema.TableModifiedByProc2]

Used By: Functional Area this is use in, for example, Payroll, Accounting, Finance

Parameter(s): @param1 - description and usage

 @param2 - description and usage

Usage: EXEC dbo.usp_DoSomeStuff

 @param1 = 1,

 @param2 = 3,

 @param3 = 2

 Additional notes or caveats about this object, like where it can and cannot be

run, or

 gotchas to watch for when using it.

**

SUMMARY OF CHANGES

Date(yyyy-mm-dd) Author Comments

------------------- ------------------- --

2018-04-27 John Usdaworkhur Move Z <-> X was done in a single step. Warehouse does not

 allow this. Converted to two step process.

 Z <-> 7 <-> X

 1) move class Z to class 7

 2) move class 7 to class X

2022-03-22 Maan Widaplan General formatting and added header information.

2022-03-22 Maan Widaplan Added logic to automatically Move G <-> H after 12 months.

***/

Chapter: SQL and procedural languages — PL/SQL (procedural language extension to Structured Query Language)

70 | 110

5. Create UNIT tests for your PL/SQL code.

We recommend using utPLSQL. utPLSQL is a Unit Testing framework for Oracle PL/SQL. The

framework follows industry standards and best patterns of modern Unit Testing frameworks like

JUnit and RSpec.

Best Practices from utPLSQL website:

 ‣ Test Isolation and Dependency

 > Tests should not depend on a specific order to run

 > Tests should not depend on other tests to execute

 > Tests should not depend on specific database state, they should set up the expected

state before being run

 > Tests should keep the environment unchanged post execution

 ‣ Writing tests

 > Tests should not mimic / duplicate the logic of tested code

 > Tests should contain zero logic (or as close to zero as possible)

 > The 3A rule:

 ▷ Arrange (setup inputs/data/environment for the tested code)

 ▷ Act (execute code under test)

 ▷ Assert (validate the outcomes of the execution)

 > Each tested procedure/function/trigger (code block) should have more than one test

 > Each test should check only one behavior (one requirement) of the code block under test

 > Tests should be maintained as thoroughly as production code

 > Every test needs to be built so that it can fail, tests that do not fail when needed are

useless

 ‣ Gaining value from the tests

 > Tests are only valuable if they are executed frequently, ideally with every change to the

project code

 > Tests need to run very fast; the slower the tests, the longer you wait. Build tests with

performance in mind (do you really need to have 10k rows to run the tests?)

 > Tests that are executed infrequently can quickly become stale and end up adding

overhead rather than value. Maintain tests as you would maintain code.

http://www.utplsql.org/utPLSQL/latest/

Chapter: SQL and procedural languages — PL/SQL (procedural language extension to Structured Query Language)

71 | 110

 > Tests that are failing need to be addressed immediately. How can you trust your tests

when 139 of 1000 tests are failing for a month? Will you recognize each time that it is still

the same 139 tests?

 ‣ Tests are not for production

 > Tests will generate and operate on fake data. They might insert, update and delete data.

You don’t want tests to run on a production database and affect real life data.

 ‣ Tests and their relationship to code under test

 > Tests and the code under the test should be in separate packages. This is a fundamental

separation of responsibilities.

 > It is common for test code to be in the same schema as the tested code. This removes the

need to manage privileges for the tests.

 ‣ Version Control

 > Use a version control system for your code. Don’t just trust the database for code

storage. This includes both the code under test, and the unit tests you develop as well.

Treat the database as a target/destination for your code, not as a source of it.

Chapter: SQL and procedural languages — PL/SQL (procedural language extension to Structured Query Language)

72 | 110

6.2.2. PL/SQL naming conventions

Object type Naming convention Example

Parameter

Input parameter p_<root_name>_i

Output parameter p_<root_name>_o

Input Output parameter p_<root_name>_io

Variable

Variable declared in PL/SQL block or at procedure/

function level l_<root_name>

Variable declared at package level g_<root_name>

Constant declared in PL/SQL block or at procedure/

function level c_<root_name>

Constant declared at package level gc_<root_name>

Explicit cursor [SC_]<root_name>_cur

Cursor variables [SC_]<root_name>_cv

Record types [SC_]<root_name>_rt

Record variable SC_<root_name>[_rec]

Collection types

Associative array [SC_]<root_name>_aat

Nested table [SC_]<root_name>_nt

Variable sized array [SC_]<root_name>_vat

Collection variables [SC_]<root_name>

Object type

User-defined type

Object type t_<root_name>

Object table t_<root_name>_tab

Exception e_<root_name>

Exception number en_<root_name>

 > Table 6-1 PL/SQL naming conventions

Chapter: SQL and procedural languages — PL/SQL (procedural language extension to Structured Query Language)

73 | 110

6.2.3. Debug PL/SQL code with SQL Developer

The PL/SQL Debugger works pretty much out of the box when used with a previous Oracle version.

These are the things we needed in place before we could start debugging PL/SQL:

 ‣ A grant of the DEBUG CONNECT SESSION privilege

 ‣ EXECUTE privilege on DBMS_DEBUG_JDWP

 ‣ EXECUTE privilege on the stored procedure you want to debug

Starting with Oracle 12c, if you want to debug PL/SQL stored procedures in the database through

a Java Debug Wire Protocol (JDWP)-based debugger, such as SQL Developer or JDeveloper, then

you must be granted the jdwp ACL privilege to connect your database session to the debugger at a

particular host.

This is one way you can configure network access for JDWP operations:

BEGIN
 DBMS_NETWORK_ACL_ADMIN.APPEND_HOST_ACE
 (
 host => ‘localhost’, -- Host can be a host name, domain name, IP address, or
subnet.
 lower_port => null,
 upper_port => null,
 ace => xs$ace_type(privilege_list => xs$name_list(‘jdwp’),
 principal_name => ‘schema’,
 principal_type => xs_acl.ptype_db)
);
END;

After permissions are given, you are set for debugging. The first step is compiling for debugging. Go

to the object explorer and find your PL/SQL package, procedure or function. Right click on it and

select Compile for Debug.

Chapter: SQL and procedural languages — PL/SQL (procedural language extension to Structured Query Language)

74 | 110

 > Figure 6-5 Compile for debug

This will recompile the object and add extra information for debugging purposes. You shouldn’t do

this on a production server, only on a development or test server. But then again, you shouldn’t be

debugging on production anyway!

Once the package has been compiled successfully, you need to set up your debug session. If you

start a debug now, the code will run and won’t stop, unless it finds an error.

If you want it to stop, you can do it in two ways.

First, set a breakpoint. A breakpoint is a point in the code where the debugger will stop. It’s useful for

analyzing the path that the code has taken, as well as seeing what variables are initialized and set to.

To set a breakpoint, click in the left margin of the code on the line you want to set a breakpoint on. If

done correctly, a red dot will appear in the margin.

 > Figure 6-6 Breakpoint

Chapter: SQL and procedural languages — PL/SQL (procedural language extension to Structured Query Language)

75 | 110

 > Figure 6-7 Debugger options

To turn off a breakpoint, click the red button again.

If you don’t want to set a breakpoint, you can just run the code and step through it. However, there

is no button to start the debug session by clicking Step Over, as found in other IDEs. SQL Developer’s

default “debug” action is to run until a breakpoint occurs.

You can change this by going to Tools > Preferences, and clicking Debugger.

Change the option that says “Start Debugging Option” to Step Into. This will allow you to click

Debug and run to the first line of code.

Now you’ve set up the environment and the code, you can start debugging

Click on the Debug button, which looks like a little bug.

Chapter: SQL and procedural languages — PL/SQL (procedural language extension to Structured Query Language)

76 | 110

 > Figure 6-8 Debugging

 > Figure 6-9 Debug PL/SQL

A window will appear:

Chapter: SQL and procedural languages — PL/SQL (procedural language extension to Structured Query Language)

77 | 110

This window basically creates an anonymous PL/SQL block of code, to run the procedure you want

to debug. Here you can set up any parameters or variables before you run the code, which is very

useful.

Change the code or add any parameters you like and click OK.

If Windows firewall warning appears, you can click “Allow access”.

The debugger should now be running!

There are several commands available in the SQL Developer debugger.

From left to right, starting with the big red square, they are:

 ‣ Stop – stops the debug session.

 ‣ Find Execution Point – moves your cursor to where the code has stopped.

 ‣ Step Over – steps over the selected line and moves to the next line in the code.

 ‣ Step Into – steps into the line of code selected, causing the debugger to continue inside the

method or function that the line of code is currently on.

 ‣ Step Out – steps out of the method or function you are in, and returns to the level above.

 ‣ Step to End of Method – goes to the end of the method.

 ‣ Resume – continues debugging, until another error or breakpoint is reached.

 ‣ Pause – pauses the debugger in its place.

 ‣ Suspend All Breakpoints – turns off all breakpoints on the current database.

If you’ve used other debug tools before, then this concept may be familiar to you already.

 > Figure 6-10 Debugger commands

Chapter: SQL and procedural languages — PL/SQL (procedural language extension to Structured Query Language)

78 | 110

6.2.4. Event logging on Oracle database

Logging events on the database gives us useful information when tracking process execution if the

process is written in PL/SQL procedure. When designing logging, one should pay attention to code

readability and simplicity. Logging should be easy to use with a small footprint.

6.2.4.1. EVT_LOG table

Event logging is using the EVT_LOG table where all information about process execution will be

stored: process start, process end, process duration and an error message if the process fails to

execute. Table definition with fields and descriptions is shown in the following table:

 > Table 6-2 EVT_LOG

COLUMN_NAME DATA_TYPE NULL RNO COMMENT

ID NUMBER(38,0) No 1
Primary key of the table, using
sequence to fill.

EVT_NAME
VARCHAR2(255
CHAR)

Yes 2
Name of the event: procedure,
package, insert, truncate...

USER_CREATED
VARCHAR2(255
CHAR)

Yes 3
Database user that created the
event.

DATETIME_START TIMESTAMP(6) Yes 4 Start timestamp of the event.

DATETIME_END TIMESTAMP(6) Yes 5 End time of the process.

DURATION_SEC NUMBER(20,6) Yes 6
Duration of the event or process
in seconds.

TABLE_NAME
VARCHAR2(255
CHAR)

Yes 7 Table name if used id event.

ROW_COUNT NUMBER(38,0) Yes 8
Count of the rows affected in the
process.

STATUS
VARCHAR2(10
CHAR)

Yes 9 Status of the process: ok, error.

ERROR_MESSAGE
VARCHAR2(2000
CHAR)

Yes 10
If the process fails to execute, a
database error message will be
written.

INFO_MESSAGE
VARCHAR2(500
CHAR)

Yes 11
Optional field to write additional
information about the event or
process.

Chapter: SQL and procedural languages — PL/SQL (procedural language extension to Structured Query Language)

79 | 110

6.2.4.2. LOG_EVT package

Logging is implemented in the PLS/QL package using functions and procedures.

LOG_START function

Function used to log start of the event, returns ID of the LOG_EVT table row used to pass as

parameter in LOG_END, LOG_ERROR procedures.

Parameters:

 ‣ p_event_name – name of package, procedure, insert operation, truncate, delete

 ‣ p_table_name – name of the table affected in the process

 ‣ p_info – additional information about the process

LOG_END procedure

Procedure used to log end, duration, and row count of the process. End of the process is

logged automatically using systimestamp, and duration is calculated using end and start time

Parameters

 ‣ p_evt_id – ID of the row returned by LOG_START function

 ‣ p_row_count – count of the rows affected by the process if known

 ‣ p_info – additional information about the process

LOG_ERROR procedure

Procedure used to log errors of the process. If the process fails to execute or an error occurs, an

error message will be written about the process. Procedure is using the DBMS_UTILITY package

to back-trace the error and write names of the packages and line numbers where exception is

thrown.

Parameters

 ‣ p_evt_id – ID of the row returned by LOG_START function

Chapter: SQL and procedural languages — PL/SQL (procedural language extension to Structured Query Language)

80 | 110

Example of logging in the procedure:

procedure insert_rows(p_date in date) is
 l_log_id int;
 begin

 -- Beginning of the process logging
 l_log_id := log_evt.log_start(
 ‘insert_rows’,
 ‘ACCOUNT_REPORT’,
 ‘Insert rows into ACCOUNT_REPORT table.’
);

 -- insert
 insert into ACCOUNT_REPORT (ID, FIRST_NAME, LAST_NAME)
 SELECT * FROM ACCOUNT_TABLE WHERE SALARY > 1000;

 -- end of the process logging
 log_evt.log_end(l_log_id, SQL%ROWCOUNT);

 exception when others then
 -- logging the error if occurs
 log_evt.log_error(l_log_id);
 raise;
 end;

6.2.4.3. Dependencies

Sequence

SEQ_HRAGSL_EVT_LOG – used to populate ID field in EVT_LOG table in function LOG_START

Packages

DBMS_UTILITY – used to back trace exception when error occurs in the process

PKG_UTILS – used to calculate time difference between process end and process start in seconds

Table

EVT_LOG – used to store data about process: logging table

Chapter: SQL and procedural languages — PL/SQL (procedural language extension to Structured Query Language)

81 | 110

6.2.5. Code snippets

6.2.5.1. What are snippets?

Snippets are nothing more than simple code fragments saved for later or repeated use. They can

significantly improve your workflow and save time. They are often shared between team members

working on the same project or even online in communities such as Oracle Apex.

Snippet operations

Following actions can be done on snippets:

 ‣ Creating - By clicking on Create Snippet action on the navigation bar you can create a

snippet starting from scratch.

 ‣ Creating from selection - Select the part of the code you think is important and right-click it

and save it as a snippet.

 ‣ Sharing - Click on the share icon to share or unshare a snippet.

 ‣ Editing - On the Snippets page, click the snippet name, and then click the Edit icon.

 ‣ Deleting - You can only delete the snippets that you own.

6.2.5.2. Snippet Contents

Contents of a snippet can be inserted into your SQL script either by copying it from the snippets

page or by inserting it from the context menu. Adding comments to snippets is also possible and

recommended especially if you are sharing snippets. Implementing GIT for version management of

snippets is also possible.

6.2.5.3. Examples

Oracle SQL developer should already come with some useful built in snippets sorted into categories

such as character functions, aggregate functions, conversion functions etc. Dragging and dropping

one to your worksheet should insert the snippet code.

 > Figure 6-11 Trim Snippet

https://apex.oracle.com/pls/apex/f?p=43135:21::::::

82 | 110

7. Technical
documentation
Why do we need technical documentation?

Even though it’s common belief that technical

documentation is used to explain what the code

does, its purpose is to describe how the code

does it. Main purpose of documentation is to

increase product maintainability.

Technical documentation is an excellent tool for

knowledge transfer. Some code might consist of

complex algorithms, some of workarounds which

will not be clear to every developer. Having good

documentation will help in those cases.

It saves time and effort whether it’s new

development or an upgrade to existing code.

It enables you to quickly and efficiently find

relevant pieces of code.

It makes onboarding go smoother. With well

written documentation, new employees will have

all sorts of notes, helpful guides and directions

which they can use in daily work. Instead of

having to constantly ping someone on their

team, they can use those resources to answer

their own questions.

Chapter: Technical documentation — PL/SQL (procedural language extension to Structured Query Language)

83 | 110

Combined with data lineage, it helps troubleshoot production issues. In case of any problems

emerging after development is released, having up-to-date documentation can and will speed up

fixing eventual problems.

Having no documentation is almost as bad as having too much or ill-suited documentation. Excessive

documentation can lead to information overload, which in turn induces errors and impairs decision

making due to having to process an excessive amount of data.

Here are some guidelines on how to write excellent documentation:

 ‣ Keep it simple and concise. Don’t overcomplicate your documentation and don’t use complex

language. Don’t comment on every line of your code; use documentation to explain something

that really needs to be explained or it’s not self-evident.

 ‣ Don’t assume your audience is familiar with the topic; try to provide as much context as

possible.

 ‣ Describe the business need for the process. The business meaning, as well as the technical one,

greatly helps to understand the process.

 ‣ Don’t repeat yourself. If something is already explained, point to that section, rather than

explaining it again.

 ‣ Document any changes to your code. Don’t just document new features, you should also

document deprecating features, capturing any changes in your product.

 ‣ Review as much as you can. If possible, make sure you have several people reviewing your

document.

 ‣ If you use acronyms, clearly state their meaning. Consider creating a table with acronym

definitions.

 ‣ Include user manual, if needed.

Here is a sample of a template for writing technical documentation for DWH.

https://agilos-it.com/DWH_concepts/technical_documentation_template.pdf

84 | 110

8. Data governance
Data governance encompasses a set of

processes, standards, policies, roles and metrics

which ensure the efficient and effective use

of information in supporting an organization

to accomplish its goals. It establishes the

protocols and responsibilities which provide the

quality and security of the data used across

the business. Data governance defines who

can take what action on what data, in which

situations, and by what methods. A well-crafted

data governance strategy is essential for any

organization that works with data.

Data governance is a necessity in today’s fast-paced
and highly competitive enterprise environment.
With the ability to collect vast amounts of diverse
internal and external data, organizations require
the discipline to maximize the value of that data,
manage its risks, and decrease the cost of its
management.

Chapter: Data governance — Data cleaning

85 | 110

Compliance with relevant government regulations, such as the GDPR and the CCPA, will need to be

ensured through defined retention requirements, such as a history of who changed what information

and when. Data governance ensures that roles and responsibilities related to data are clearly defined

and that accountability is established across the organization. A comprehensive data governance

framework covers strategic, tactical, and operational roles and responsibilities.

8.1. Data cleaning
Data cleaning, also referred to as data cleansing, is the task of identifying and correcting (or

removing) corrupt or inaccurate records from a dataset, table, or database. It involves identifying

incomplete, incorrect or irrelevant information and then replacing, modifying, or deleting it. Data

cleaning can be carried out interactively using data manipulation tools or as a batch process through

scripting.

Upon completion of the cleaning process, the dataset should be in alignment with other comparable

datasets within the system. The inconsistencies identified or removed may have originated from user

input errors, corruption during transmission or storage, or different data dictionary definitions of

similar entities in separate repositories. Data cleaning is different from data validation in a way that

validation typically involves rejecting data at the time of entry, rather than on batches of data, and is

performed at the point of entry rather than on existing data.

The process of data cleaning may involve eliminating typographical errors or validating and

adjusting values against a predefined list of entities. The validation can be strict, such as rejecting

any address that does not have a valid postal code, or with a fuzzy or approximate string matching,

such as correcting records that partially match existing, known records. Some data cleaning

solutions will clean data by cross-referencing it with a validated dataset. A widely used data cleaning

practice is data enhancement, which involves adding related information to make the data more

comprehensive. For instance, appending addresses with phone numbers related to that address.

Data cleaning may also involve normalization (or harmonization) of data, which is the process of

bringing together data of “varying file formats, naming conventions, and columns”, and transforming

it into one cohesive dataset. An example of this is expanding abbreviations (“st, rd, etc.” to “street,

road, etcetera”).

Incorrect or inconsistent data can lead to inaccurate conclusions and misdirected investments on

both public and private scales. For example, the government may use population census figures to

determine which regions require additional spending and investment in infrastructure and services.

In this scenario, it is crucial to have access to reliable data to prevent mistaken fiscal decisions. In the

business realm, inaccurate data may have a negative financial impact. Many organizations maintain

customer information databases which record data such as contact information, addresses, and

preferences. For example, if the addresses are inconsistent, the company may suffer the cost of re-

sending mail or even losing customers.

Chapter: Data governance — Data Quality

86 | 110

The concept of integrity encompasses consistency, accuracy and some aspects of validation, but it

is rarely used by itself in the context of data cleaning because it is not specific enough. (For example,

“referential integrity” is the term used to refer to foreign key constraints.)

High-quality source data is related to the “data quality culture”” and must be established at the top

level of the organization. It’s not only about implementing robust validation checks on entry screens,

as users can often get around them, regardless of how strong the checks are.

8.2. Data Quality
Data quality is evaluated from a user perspective by measuring how well it meets the project

requirements. Some organizations enforce a data government policy which precisely defines

expected data quality and data privacy. Data quality can also be enforced by governing or

regulatory institutions like GDPR or BCBS 239. DQ circuit loop should be used to achieve a certain

quality standard.

8.2.1. Data Quality Circuit Loop

A DQ circuit loop (pictured below) should be implemented to maintain the desired data quality

standard.

8.2.2. Data Quality Roles

MONITOR

IMPROVEDEFINE

MEA��RE ANALYZE

 > Figure 8-1 DQ circuit loop

Chapter: Data governance — Data Quality

87 | 110

User roles required for successful data quality maintenance:

 ‣ Data Owner - Data owner is usually a senior team member with good business logic

understanding and good communication skills who is responsible for data privacy and quality.

It’s possible to have more than one data owner although in that case only one should be

responsible for the full picture data quality. Data owner controls a data domain (marketing

data, controlling data etc.).

 ‣ Data Steward - Data stewards are typically team members under the data owner’s lead. They

should be responsible for day-to-day data quality operations and end user support. Data

stewards should have a good understanding of both the business and technical side of data

quality control.

 ‣ Data User - Data users are typically data warehouse development team members that are

working with the data. They often set up required data quality controls. Data users should

be proficient in data analysis skills and also have a deep understanding of data and business

logic.

Having skilled data quality team members and well defined and widely accepted data quality roles is

key to successful data quality management.

8.2.3. Defining the Rules

Defining and enforcing well thought out data quality rules and constraints should be a priority when

starting the DQ process. This should be done by a team member with a great understanding of the

data warehouse and its use.

8.2.4. Finding DQ Rules

The most significant input when defining data quality rules should be given by data users considering

they are the ones working with the data itself. This approach should also help with the development

team’s acceptance of the proposed rules and controls. If data users are not familiar with the earlier

layers of the data warehouse, setting up rules this way could lead to potential problems as data

corruption in earlier layers can’t be detected.

Chapter: Data governance — Data Quality

88 | 110

8.2.5. Handling Errors

Error types possible when working with data warehouse:

 ‣ Wrong transformation logic in the data warehouse

Duplicates, incorrect values, “lost” data and similar are the most common

data quality problems. Often the reason they happen is overly complex

transformation logic as a result of the complex IT landscape.

 ‣ Unstable load process or wrong handling of loads

Job orchestration errors like jobs not executing, jobs starting late or early and

similar or errors due to user intervention like skipped jobs or job execution

in the wrong context are the most common errors of this type.

 ‣ Wrong data transfer of data sources

Errors like transferring or processing empty or incomplete data

as result of mismanagement of source data.

 ‣ Wrong operational data

Operational data contains errors that are not detected.

 ‣ Misinterpretation of data

The data itself is not corrupted but the interpretation of it is not correct. This is a data

governance issue that should be taken care of by data stewards.

These problems are often caused by people lacking the appropriate know-how and skills to define,

implement, run, and work with a data warehouse solution.

8.2.6. Data Quality Dimensions

DQ dimensions should be used to sort DQ checks into groups. There can be as many of them as

needed but in practice there are only a few of them that are necessary.

 ‣ Completeness - Checks data availability and accessibility

 ‣ Consistency - Checks data inconsistencies and conflicting data

 ‣ Uniqueness - Checks for duplicates

 ‣ Integrity - Checks links between data and data constraints

 ‣ Timeliness - Checks if all data is updated.

Chapter: Data governance — Data Quality

89 | 110

Data generated by the data warehouse load process can be helpful as well.

 ‣ Tables with discarded data - Data that causes errors in the loading process due to integrity

constraints or other errors could be skipped or delayed by a data warehouse process.

 ‣ Logging information - Information about the errors could be saved into designated tables or

files.

 ‣ Bill of delivery - Bills of delivery or summation of loaded data are sometimes generated by

operational systems and can be used for reconciliation checks. They contain information like

number of records, number of distinct keys, sum of values etc.

Implementation of these checks still requires analysis and error handling by a team member

responsible for data quality.

The process of executing data quality rules and checks needs to be efficient and organized well

enough to accommodate a large number of rules (sometimes thousands). Data stored in relational

DBMS should be only partly checked because of the constraint implementations already built. Avoid

DQ control if:

 ‣ Mandatory columns contain NULL

 ‣ Primary key columns contain non-unique data

 ‣ There are no existing foreign keys

It should be considered that data definition and constraints can theoretically change at any time.

Also, if the organization implementing DQ controls is large enough there should be some sort of “data

quality for data quality” control and rules. Depending on the number of developers working on data

quality there can often be overlapping or conflicting rules. It’s very important to keep track of and

properly manage DQ controls.

Chapter: Data governance — Data Quality

90 | 110

8.2.7. DQ Rule Classes

Types of tests used to classify DQ rules:

 ‣ Data quality check - Standard checking method, one or more tables are checked on one data

warehouse layer

 ‣ Reconciliation - Used to check completeness DQ dimension. Checks if the data was

transported correctly between layers. It can be done in a single row or using a summarized

approach. Reconciliation should be done between each layer because skipping layers will

require more complex transformation logic

 ‣ Monitoring - Used to check for growing data differences between data warehouse and

operational data building over time. Summarized time series of data should be implemented to

check for issues like these

8.2.8. DQ Issues Quantification

After identifying issues using checks we explained before you should consider how to quantify the

result data. Returning the number of rows with row IDs is not enough for data quality.

Consider adding:

 ‣ How to quantify/count the detected errors - Depending on the data summarization might

be needed, for instance monetary values. Sometimes returning both numbers of rows with a

summarization value might be the most appropriate.

 ‣ Population - Amount of data that’s subject to specific data quality control. It allows you to

represent corrupt data as a percentage of all data which is very important.

 ‣ Definition of the result - It’s possible that some corrupt data might not cause errors which is

why traffic light systems should be implemented. Each identified data point should be given a

percent value and a threshold should be defined on business unit level.

 ‣ Collect sample error rows - Some number of found error rows should be returned to the data

user for easier and more efficient examination.

 ‣ Whitelists - It’s possible that DQ controls will find known errors that can’t be corrected in the

foreseeable future. These rows should be placed on a whitelist so that the data quality control

mechanisms know about them and can skip them if encountered.

Chapter: Data governance — Data Quality

91 | 110

8.2.9. Metadata

Metadata is important to route the “Analyze” and monitor the phases of the data quality control loop.

 ‣ Checked items - Checked tables and fields can be assigned to DQ rules and rules can be

automatically assigned to users. This is useful in instances where you need to prove how the

data is checked.

 ‣ Data user - All DQ rules should have at least one data user assigned to check the results

during the “Analyze” phase.

 ‣ Data owner - Every DQ rule must have a data owner assigned.

Assigning users to rules can be done automatically via data lineage. This approach can produce

varying results as it allows for the assigning rules to users that are not familiar with them.

8.2.10. How to Measure Data Quality

Data quality rules should be implemented so that they don’t compromise data loading processes.

Optimally, load and DQ processes should be run in parallel and be set up in a way that error reports

generated make analysis phase easier without affecting load execution performance. In order to

detect errors and corrupt data as soon as possible DQ processes should be run as early as possible.

8.2.11. Analysis

The final step of the process is analysis of the checked data and taking actions to correct the errors.

This task should be assigned to data owners and data users who should act according to predefined

methods.

Some possible actions:

 ‣ Serious problem - Repeat loading process after fixing the issue.

 ‣ Problem is acceptable - Fix the issue in loaded data and try to fix the issue for future load

processes.

 ‣ Defective DQ rule - DQ rule should be fixed.

It’s useful to implement a data quality dashboard for easier and timely reaction to detected errors in

data. For smaller teams with less resources and time this can be especially useful.

Chapter: Data governance — Data Quality

92 | 110

DQ dashboard should have:

 ‣ All rules assigned to a given role

 ‣ The rules’ results

 ‣ A mandatory comment or a note

 ‣ An option to ignore the error on a business unit level.

 ‣ Showing rules that were not executed

 ‣ Load process status

Lastly, key performance indicators could be implemented for easy overview of DQ check results. After

that, it’s the data owner’s responsibility to make sure all errors are noted and handled correctly.

8.2.12. DQ Processes maintenance

As the data warehouse changes, some DQ processes will also need change and get updates.

These three things should always be kept in mind:

 ‣ Keep it up to date - Data warehouse changes that call for changes in DQ rules should be

implemented as soon as possible.

 ‣ Enhance - Developing new rules for errors that were not handled.

 ‣ Streamline - Disabling unneeded DW rules and consolidating overlapping rules.

8.2.13. DQ Processes Monitoring

To improve the DQ process it should be closely monitored over time.

Elements to monitor:

 ‣ Data coverage

 ‣ Amount of DQ findings within the active rules over time

 ‣ Number of active data quality rules

 ‣ Time needed to have all findings rated and fixed

Chapter: Data governance — Data Quality

93 | 110

8.2.14. Final thoughts

Closing points that should be considered:

Anticipate resistance - Unless it’s explicitly demanded by compliance and regulatory demands,

DQ controls will most likely be viewed as an additional workload without significant benefits for the

development team.

Find a sponsor - Having a highly ranked organization member behind your back can help with

establishing a DQ system.

Find allies - Like-minded team members are crucial in keeping the DQ circuit loop working properly.

Start small - If the implementation of the DQ system is just starting, the best option would be to start

with a single business unit.

Don’t lose sight of the whole picture - Some elements should be set in place (roles especially) no

matter the scale of the project.

Once implemented, don’t let go - Focus on data quality processes needs to be maintained as long

as the data warehouse development is active.

Data Quality tool - Consider using an existing Data Quality tool – there are many options available,

among others, DataQuality application by Agilos IT.

https://agilos-it.com/DWH_concepts/DataQuality_whitepaper.pdf

Chapter: Data governance — Data lineage

94 | 110

8.3. Data lineage

8.3.1. What is data lineage?

Data lineage traces the path of data throughout an organization’s IT systems, illustrating how it

flows between them and is transformed for various purposes. By utilizing metadata, which provides

information about the data, it allows both end-users and data management professionals to follow

the history of data assets and understand their business context or technical characteristics.

For instance, data lineage records can assist data scientists, other data analysts and business

users in understanding the data they are working with and ensuring it aligns with their information

needs. Data lineage also holds significant value in data governance, master data management

and compliance initiatives. Among other aspects of those programs, it streamlines two vital data

governance processes: identifying the underlying reasons for data quality issues and assessing the

effects of changes to datasets.

Data lineage information is gathered from operational systems as data is processed and from

the data warehouses and data lakes which store data sets for business intelligence and analytics

applications. Along with comprehensive documentation, data flow maps and diagrams can be

created to provide visualized perspectives of data lineage correlated to business processes. To ease

access to lineage information for end-users, it is commonly integrated into data catalogs, which

inventory data assets and the metadata associated with them.

8.3.2. Why is data lineage important?

 > Figure 8-2 Screenshot from our DataLineage tool

Chapter: Data governance — Data lineage

95 | 110

Data lineage information is essential for data management and analytics endeavors. Data can be

better managed and utilized by organizations with the assistance of lineage details. Without access

to this information, it becomes challenging to fully capitalize on the potential business value of data.

Some of the advantages of data lineage are listed below.

 ‣ More useful and accurate analytics - By providing analytics teams and business users with

information on the origin and significance of data, data lineage enhances their ability to

locate the data needed for business intelligence and data science applications. This leads to

more accurate analytics outcomes and increases the likelihood that data analysis will yield

valuable information to inform business decisions.

 ‣ Enhanced data governance - Data lineage also facilitates monitoring data and carrying out

other essential aspects of the governance process. It assists data governance managers and

team members in ensuring that data is accurate, clean, and consistent and that it is secured,

managed, and utilized appropriately.

 ‣ Increased data security and privacy protections - Organizations can leverage data lineage

information to identify sensitive data which requires robust security. It can also be used to

establish various levels of user access privileges based on security and data privacy policies

and to evaluate potential data risks as part of an enterprise risk management strategy.

 ‣ Elevated regulatory compliance - Organizations can benefit from enhanced security

measures informed by data lineage to ensure compliance with data privacy laws and other

regulations. Well-documented data lineage also simplifies internal compliance audits and

reporting on compliance levels.

 ‣ Optimized data management - In addition to data quality enhancement, data lineage

improves various other data management activities such as managing data migrations,

eliminating data silos, and identifying and resolving missing data in data sets.

Chapter: Data governance — Data security and privacy

96 | 110

8.4. Data security and privacy
Data warehouse security is essential and we need to design flawless systems to protect business and

customer-sensitive data. Access to DWH should be managed by creating roles with different levels

of access for different groups of employees. Another important thing to take care of, is making sure

that sensitive information is not understandable and that the data is not personally identifiable. It is

very common that data for development and test environments are taken from production databases

because real data is the best to work with. But in this case, all the sensitive, personally identifiable

information is available in the test or development environment. To handle this issue, different kinds of

data masking methods can be used.

8.4.1. Data masking

Sensitive data which is personally identifiable needs special attention because it is vulnerable for

data breaches. Data breach can happen by system error or malfunctioning, or when someone is

stealing the data (either an employee who has access or an attacker from outside the organization).

To lower the risk of data breaches, we should use data masking methods.

Data masking in DWH is most commonly used for creating test data because employees usually have

greater access to data in test environments than they do in production. For the organization, leaked

data means a loss of money and, more importantly, losing trust from clients.

Masking the data also gives a better overview of where the sensitive data is and who is using it, and

having that overview should be a must have for every organization because it is important to ensure

that sensitive information is stored and secured according to the laws of privacy and regulations.

After a data breach happens, additional work and resources will be needed:

 ‣ Technical overview and organizational audit of why data breach happened

 ‣ Possible new development to fix the reason why the breach happened

 ‣ Explaining to customers and media the reason of data breach

 ‣ Regaining organization reputation

 ‣ Fines and legal judgements

Chapter: Data governance — Data security and privacy

97 | 110

8.4.1.1. Data masking techniques

There are different ways of masking the data, some most commonly used are:

 ‣ Shuffling – values in column are shuffled randomly

 ‣ Randomizing – generating random values

 ‣ Hiding – hiding values completely by using views

 ‣ Substitution – each character or number is replaced by another value

 ‣ Scrambling – value has some part scrambled with a symbol

 ‣ Blurring – turning a value into a certain range of values

 ‣ Encryption – value is encrypted with some encrypting algorithm using a secret key

8.4.1.2. Data masking in Oracle DB using DBMS_REDACT package

Redaction policies are a set of rules for redacting data on table level. There is a PL/SQL package

DBMS_REDACT, in Oracle 12c and newer, used for creating and maintaining redaction policies on

a table. Creating these policies makes data masking quick and simplifies managing the formats

of masked columns as we have the possibility to mask data using different techniques. Using this

method, everything is done on table level and not by creating views or doing the masking in the

application. Nothing changes for the user who is allowed to see the data without the masking.

Chapter: Data governance — Data security and privacy

98 | 110

8.4.2. User permissions in DWH

Handling user permissions in databases is usually done by creating roles for different user groups. A

simple solution would be to have a layered architectural solution where a certain user would have the

access to all the objects in a specific layer. Usually, that is not the case and the solution required is

more complex. Analyzing users and their needs is necessary to determine how many roles should be

defined and what rights should each role have.

When designing the warehouse, it’s advisable to think about the data people will access and then

classify both the information and end-users.

There are two data classification approaches:

 ‣ Sensitivity-based - highly-sensitive personal information will be more restricted while generic

data will be available to more users.

 ‣ Function-based - specific user categories will be able to access only the data they need for

their work and other information will be blocked.

 ‣ And two user classification methods:

 ‣ Hierarchy-based - this model is suitable for enterprises with few departments (you could

create data marts with unique access for each team).

 ‣ Role-based - if a company has a lot of branches with the same data required, it’s better to set

accesses based on roles: administrators, developers, analysts, etc.

Choosing one way or combining several of them, a comprehensive, yet scalable, data warehouse

architecture can be built.

99 | 110

9. Data pipelines
Process of data collection and analysis is called

data integration and DWH is just a part of

the whole process so there are other possible

methods/modifications of dealing with large

volumes of data.

DWH is a part of a broader concept called Data

pipelines. It is the system of pipelines connecting

disparate data sources, storage layers, data

processing systems, analytics tools, and

applications.

They are necessary for real-time analytics to

support fast, data-driven decisions.

Examples of data pipelines:

 ‣ Batch based

 ‣ Data lake

 ‣ Data mesh

Chapter: Data pipelines — Batch based (Enterprise Data Warehouse)

100 | 110

9.1. Batch based (Enterprise Data Warehouse)
DWH is one example of a batch-based data pipeline, it stores large volumes of data from

applications/core systems. This is the conventional method of handling vast amounts of data.

9.2. Streaming data pipeline (Data Lake)
To reduce the engineering burden associated with data warehousing, large volumes of data from

many sources may now be simply ingested and stored in an object store like Amazon S3 or on-

premise Hadoop clusters. The data lake holds data in its original, unprocessed form, making it

possible to store complicated and streaming data just as easily as batch files that are structured.

Data can be stored in DWH (Redshift, Snowflake) or we can use serverless query engines (Athena,

Starburst).

Utilizing a “save now, analyze later” strategy, this method has the advantage of enabling enterprises

to manage greater volumes and more types of data.

Relational

data marts

Serverless

Query

Engines

Sc+emaless

ingestion

E8= / E=8

pipeline per

use case

Relational

data stores

Data

streams

Applications

Data sources Enterprise Data =ake Wased

on Hadoop or Spark

Analyics Engines Data 8argets

App

development

</>

Analytics and

data science

Ad�+oc data

exploration

 > Figure 9-1 Data Lake

Chapter: Data pipelines — Data Mesh

101 | 110

9.3. Data Mesh
Similar to the data lake technique, with this architecture raw data is fed into object storage with little

to no preparation. The data can then be extracted from the lake by various teams, who can then run

their own ETL or ELT pipelines to produce the dataset required for additional analysis. The data is

then prepared using uniformly enforced protocols and written back to the lake in an open file format,

such as Apache Parquet, while keeping important details about the data set in a business catalog.

This provides the advantages of decentralized data domains while ensuring that it can be found and

used by other teams, without requiring a centralized data team to handle every aspect of it.

Domain

data marts

Schemaless

ingestion

Sel+3ser0e

access to data

Relational

data stores

Data

streams

Data in+rastrSstSre as a plat+orm

Applications

Data soSrces Decentraliled storage Data destination

Data3dri0en

apps

Anal�tics and

data science

App

de0elopment

</>

Ad3hoc data

exploration

 > Figure 9-2 Data Mesh

102 | 110

10. Our tools
Our company is constantly trying to optimize

DWH processes by developing new tools and

methods based on automation using custom

built tools like SQLtoODI, Data Lineage

and DataQuality. SQLtoODI is a tool which

automates ODI mapping generation based on

input SQL queries from users. Data Lineage is a

tool which helps you visualize data flow inside

data warehouses. DataQuality tool is used to

guarantee data quality and make the process of

data cleaning faster and easier.

These tools give us a huge functional power
that dramatically speeds up big data processes
and reduces human expertise necessary. This
potentially reduces our users’ operational costs
while also reducing the time necessary to get
analysis results.

Chapter: Our tools — SQLtoODI

103 | 110

10.1. SQLtoODI
In DWH systems, there is a lot of work involved in creating new and editing existing ODI mappings

(transcribing SQL, PL/SQL to ODI mappings). It’s hard and time-consuming work for developers.

This job requires high precision while adhering to development standards. For large data integration

projects, using automation tools is, without a doubt, the best choice. SQLtoODI helps you easily

create a large number of ODI objects in a simple and intuitive way with only SQL code. SQLtoODI is a

great choice when developing smaller change requests (CRs), and a perfect choice when developing

larger CRs, migrating PL/SQL to ODI, migrating OWB to ODI or migrating any form of SQL to ODI.

SQLtoODI turns months of manual development into minutes.

We have developed a tool that translates complex SQL SELECT statements into ODI mappings. It

consists of three segments:

 ‣ an advanced SQL parser developed by Agilos IT, which results in high-speed delivery of

customized SQL structures

 ‣ parser structure reader and Groovy code generator

 ‣ SQLtoODI application, which enables the user to obtain Groovy code based on valid SQL code,

which can then be used to generate an ODI mapping in the ODI12c tool (which will generate

the same SQL code when executed)

 > Figure 10-1 SQLtoODI

SQL

S�L�9#

Siaie.eni

Parser

Inierpreier/

Translaior

Parser Tree ODI Defniiions

O+i Si&+io

Mappings

Groovy

S6ripi

SMlLO+i Meia+aia

Chapter: Our tools — SQLtoODI

104 | 110

This application is very useful in a DWH environment because users often have ready-made SQL

queries that need to be transferred to the ODI tool. SQLtoODI can be used in the cloud, but also as a

local application. You can read more about the tool in the SQLtoODI whitepaper, which among other

things, includes a detailed example of using SQLtoODI.

To summarize, advantages of using SQLtoODI application are:

 ‣ Cost savings - minimum resources, maximum productivity.

 ‣ Guaranteed quality - all codes have the same standards and are compatible with the ODI

data lineage.

 ‣ Better resource distribution - projects can be completed with fewer developers and testers.

 ‣ Faster development - development of ODI mappings that take hours or days can now be

created in minutes, or maybe even seconds.

If you’re interested in the application, feel free to contact us.

 > Figure 10-2 SQLtoODI application

https://www.agilos-it.com/DWH_concepts/SQLtoODI%20whitepaper.pdf

Chapter: Our tools — DataLineage

105 | 110

10.2. DataLineage
 The DataLineage tool analyzes SQL data structures and/or procedures written in the SQL language,

parses them to the lowest level and builds an object model of all metadata elements from them. This

object model can later be exported in any form that the user needs, transferred to another tool, or it

can be used to create visualizations of data connections, data lineage, or data flow overview, or even

scripts for ETL without using classic ETL tools.

The data lineage visualization tool is intended for the analysis of data connections and

transformations, in order for business and technical users to clearly determine the flow and

connection of data, their interdependence and the impact on subsequent changes.

Data Lineage is intended for generating a metadata model for complex database architectures.

Metadata can be generated based on data structures and their links specified in the referential keys,

but the real power of the tool is in the generation of models based on complex SQL queries, where

by parsing an individual query to the lowest level, an object metadata model and their connection is

built for each individual query, which is the basis for the establishment of a data lineage monitoring

the life cycle of data.

Monitoring the data lineage, as one of the basic data governance tasks, implies the establishment of

a process of understanding the flow of data connections, the processes that connect and transform

them and finally consume them. The process of establishing monitoring is based on metadata data

models and their connection.

Managing and understanding of metadata structures is the basis of building a system for tracking

and visualizing data lineage.

Key features of DataLineage tool:

 ‣ Interactive graphic representation of structured metadata

 ‣ Advanced user experience based on the needs of actual users, designed by experts with over

10 years of experience working with data warehouse systems

 ‣ Effective overview and information retrieval about data flow inside data warehouse

 ‣ Automatically generating documentation and advanced expert analysis (which directly frees

human resources) such as functional specification (document explaining in detail the effect of

future changes to the system).

 ‣ Approximating the duration of each implementation

 ‣ Generating implementation scripts

Chapter: Our tools — DataLineage

106 | 110

 ‣ Suggesting advanced expert methods of saving memory capacity using duplicate data

detection and unused data detection. This can reduce the need for disk capacity, memory and

energy use.

DataLineage makes it possible to define the source of the data structure on the basis of which

the metadata model is built. Although the existing structure of data tables in the database can be

defined as a source (in this case, the metadata model can be created with basic tools), the real

power of this tool is visible when complex procedures or SQL scripts connecting multiple data sources

with multiple retrieval criteria are set as the source.

Analyze

Parsing

Model

Object

structure

Export

JSON / XML

Reporting

 > Figure 10-3 Data Lineage

The first step is parsing of the SQL query, which begins with the separation into basic parts (most

often SELECT, FROM, WHERE, etc.), then each of those parts is parsed to the lowest level.

From the parsed data, the application builds a hierarchical object model with all structures and their

metadata descriptors and their links.

The final step in implementing the solution is defining the desired structure, format and way of

exporting these metadata structures. There are more options, from simple JSON or XML files to

creating several types of reports and data lineage visualizations.

Chapter: Our tools — DataLineage

107 | 110

DataLineage visualization tool enables visualization of all levels of data lineage.

 > Figure 10-4 DataLineage detailed system view

 > Figure 10-5 DataLineage detailed ETL(ODI/OWB) view

If you’re interested in finding out more about this tool, check out the DataLineage whitepaper or

contact us.

https://www.agilos-it.com/DWH_concepts/Data_Lineage_whitepaper.pdf

Chapter: Our tools — DataQuality

108 | 110

10.3. DataQuality
DataQuality is a module of the AgileQuery application and part of the transformation process. The

application offers the possibility for the user to quickly and easily recognize data which is incorrect,

incomplete or non-existent. Then the user will be able to correct the data so that it could arrive at the

final destination completely ready for use.

Maintaining a high level of data quality allows organizations to reduce the cost of identifying and

fixing bad data in their systems. In this way, they avoid fines or other additional costs, save on

developers who would have to take care of data quality, and maintain a good reputation among their

clients.

Key features

Inserting SQL

controls

Sending report

to email

Sc0eduling

controls

A clear overview

of errors

 > Figure 10-6 Key features of the DataQuality tool

The DataQuality application greatly facilitates the work of users, and it also brings financial benefits.

It quickly detects problems in the data, and the user receives an overview report directly to the e-mail

address, after which the data analyst can consider alternatives for eliminating the cause of the

problem, introducing preventive techniques and/or taking some corrective actions. In addition, this

tool gives data management teams more time to focus on potentially more productive tasks instead

of cleaning data.

Chapter: Our tools — DataQuality

109 | 110

 > Figure 10-7 DataQuality start screen

If you want to find out more about our DataQuality tool, take a look at DataQuality whitepaper or

contact us for more information.

https://agilos-it.com/DWH_concepts/DataQuality_whitepaper.pdf

Copyright © 2023 Agilos IT, Croatia

OFFICES

ZAGREB

Oreškovićeva 6 H

10 000 Zagreb, Croatia

SPLIT

Put Žnjana 18 B

21 000 Split, Croatia

CONTACT

T. +385 98 927 1623

info@agilosit.com

https://www.agilos-it.com

mailto:info@agilosit.com
http://www.utplsql.org/utPLSQL/latest/
https://www.facebook.com/agilosit/?locale=hr_HR
https://www.linkedin.com/company/20481237
https://www.youtube.com/channel/UC-WdZ5_GvyRwPIJcJdhPR4g

	Table of Content
	_heading=h.l7tn4k8oor94
	_Related_documents
	_heading=h.1616pjcetar3
	_heading=h.tyjcwt
	_heading=h.4i7ojhp
	_heading=h.qsh70q
	_heading=h.1664s55
	_heading=h.3q5sasy
	_heading=h.34g0dwd
	_heading=h.1jlao46
	_heading=h.43ky6rz
	_heading=h.2iq8gzs
	_heading=h.xvir7l
	_Int_PKp5nWTS
	_heading=h.1pxezwc
	_heading=h.1hmsyys
	_heading=h.37m2jsg
	_heading=h.1mrcu09
	_Int_wEFY0AQ7
	_heading=h.3l18frh
	_GoBack
	_heading=h.1baon6m
	_heading=h.pkwqa1
	_heading=h.39kk8xu
	_heading=h.haapch
	_heading=h.1gf8i83
	_heading=h.36ei31r
	_heading=h.pa119z4xqu4c
	_heading=h.usr1b6p4ly6j
	_heading=h.kocstu67kabf
	_heading=h.brpkm8q5psiu
	_heading=h.3oc3wq29q141
	_heading=h.bv64ye9d96re
	_heading=h.oaudaxn3wqko
	SQLtoODI
	_heading=h.rffl3gjgualo
	DataLineage
	DataQuality
	1. 	Introduction
	1.1. 	Purpose
	1.2. 	Scope
	1.3. 	Related documents
	1.4. 	Acronyms

	2. 	Data warehouse
	2.1. 	Overview
	2.2. 	DWH architecture
	2.2.1. 	Kimball vs. Inmon

	2.3. 	Dimensional modeling
	2.3.1. 	Dimensional modeling process
	2.3.2. 	Benefits of dimensional modeling
	2.3.3. 	Dimension tables
	2.3.4. 	Fact table
	2.3.5. 	Dealing with NULL values
	2.3.6. 	Star schema
	2.3.7. 	Snowflake schema

	2.4. 	ETL (Extract – transform – load)
	2.4.1. 	Data extraction
	2.4.2. 	Data transformation
	2.4.3. 	Data loading
	2.4.4. 	ETL vs. ELT

	2.5. 	Naming conventions

	3. 	ETL tools
	3.1. 	Oracle Data Integrator
	3.1.1. 	Standard ODI model organization
	3.1.2. 	Standard ODI project organization
	3.1.3. 	Oracle Data Integrator development tips
	3.1.4. 	ODI naming conventions

	4. 	Change management
	5. 	Release management
	5.1. 	Release management activities
	5.1.1. 	Release policy
	5.1.2. 	Release planning
	5.1.3. 	Design and development
	5.1.4. 	Build and configure the release
	5.1.5. 	Fit for purpose testing
	5.1.6. 	Release acceptance testing
	5.1.7. 	Roll-out planning
	5.1.8. 	Communication, preparation and training
	5.1.9. 	Distribution and installation
	5.1.10. 	Version control
	5.1.11. 	Roles and responsibilities
	5.1.12. 	Release management and Project management

	5.2. 	Optimal release management model

	6. 	SQL and procedural languages
	6.1. 	Structured Query Language (SQL)
	6.1.1. 	Best practices for writing SQL queries
	6.1.2. 	Execution plans

	6.2. 	PL/SQL (procedural language extension to Structured Query Language)
	6.2.1. 	PL/SQL best practices
	6.2.2. 	PL/SQL naming conventions
	6.2.3. 	Debug PL/SQL code with SQL Developer
	6.2.4. 	Event logging on Oracle database
	6.2.5. 	Code snippets

	7. 	Technical documentation
	8. 	Data governance
	8.1. 	Data cleaning
	8.2. 	Data Quality
	8.2.1. 	Data Quality Circuit Loop
	8.2.2. 	Data Quality Roles
	8.2.3. 	Defining the Rules
	8.2.4. 	Finding DQ Rules
	8.2.5. 	Handling Errors
	8.2.6. 	Data Quality Dimensions
	8.2.7. 	DQ Rule Classes
	8.2.8. 	DQ Issues Quantification
	8.2.9. 	Metadata
	8.2.10. 	How to Measure Data Quality
	8.2.11. 	Analysis
	8.2.12. 	DQ Processes maintenance
	8.2.13. 	DQ Processes Monitoring
	8.2.14. 	Final thoughts

	8.3. 	Data lineage
	8.3.1. 	What is data lineage?
	8.3.2. 	Why is data lineage important?

	8.4. 	Data security and privacy
	8.4.1. 	Data masking
	8.4.2. 	User permissions in DWH

	9. 	Data pipelines
	9.1. 	Batch based (Enterprise Data Warehouse)
	9.2. 	Streaming data pipeline (Data Lake)
	9.3. 	Data Mesh

	10. 	Our tools
	10.1. 	SQLtoODI
	10.2. 	DataLineage
	10.3. 	DataQuality

